Vol. 153
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-03-19
Design of Mode-Reconfigurable Doherty Power Amplifier
By
Progress In Electromagnetics Research C, Vol. 153, 271-279, 2025
Abstract
This paper proposes a mode-reconfigurable Doherty power amplifier (DPA). By merely exchanging the transistors' gate bias without altering the corresponding circuits, this power amplifier can achieve two different frequency-band DPA modes, enabling wide bandwidth implementation in DPAs Utilizing a single load modulation network. Simultaneously, PIN switches are utilized to improve the amplifier's bandwidth and drain efficiency during mode switching. To validate this approach, a mode-reconfigurable DPA was designed and fabricated using commercial GaN transistors. A reconfigurable Doherty power amplifier with mode 1 operating in the frequency bands of 2.5-2.9 GHz and 3.3-3.7 GHz, mode 2 operating in the frequency band of 2.8-3.4 GHz, with a drain efficiency ranging from 60.2% to 70.2%, a 6 dB output power reduction resulting in a drain efficiency of 43.5% to 53.7%, a gain between 9.4 and 11.3 dB and a saturated output power between 39.4 and 41.3 dBm. This straightforward architecture offers a promising approach for implementing Doherty power amplifiers in 5G frequency bands.
Citation
Shiwei Zhao, Longfei Zhou, Linsong Li, and Fei Zhao, "Design of Mode-Reconfigurable Doherty Power Amplifier," Progress In Electromagnetics Research C, Vol. 153, 271-279, 2025.
doi:10.2528/PIERC25021804
References

1. Doherty, W. H., "A new high efficiency power amplifier for modulated waves," Proceedings of the Institute of Radio Engineers, Vol. 24, No. 9, 1163-1182, 1936.        Google Scholar

2. Darraji, Ramzi, Fadhel M. Ghannouchi, and Oualid Hammi, "A dual-input digitally driven Doherty amplifier architecture for performance enhancement of Doherty transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1284-1293, 2011.        Google Scholar

3. Andersson, Christer M., David Gustafsson, Jessica Chani Cahuana, Richard Hellberg, and Christian Fager, "A 1-3-GHz digitally controlled dual-RF input power-amplifier design based on a Doherty-outphasing continuum analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 10, 3743-3752, 2013.        Google Scholar

4. Chen, Wenhua, Seyed Aidin Bassam, Xiang Li, Yucheng Liu, Karun Rawat, Mohamed Helaoui, Fadhel M. Ghannouchi, and Zhenghe Feng, "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2537-2546, 2011.        Google Scholar

5. Gustafsson, David, Christer M. Andersson, and Christian Fager, "A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 533-542, 2013.        Google Scholar

6. Camarchia, Vittorio, Marco Pirola, Roberto Quaglia, Seunghoon Jee, Yunsung Cho, and Bumman Kim, "The Doherty power amplifier: Review of recent solutions and trends," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 559-571, 2015.        Google Scholar

7. Pang, Jingzhou, Songbai He, Chaoyi Huang, Zhijiang Dai, Jun Peng, and Fei You, "A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4061-4071, 2015.        Google Scholar

8. Zhou, Xin Yu, Shao Yong Zheng, Wing Shing Chan, Xiaohu Fang, and Derek Ho, "Postmatching Doherty power amplifier with extended back-off range based on self-generated harmonic injection," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1951-1963, 2018.        Google Scholar

9. Pang, Jingzhou, Songbai He, Zhijiang Dai, Chaoyi Huang, Jun Peng, and Fei You, "Design of a post-matching asymmetric Doherty power amplifier for broadband applications," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 1, 52-54, 2016.        Google Scholar

10. Xia, Jing, Mengsu Yang, Yan Guo, and Anding Zhu, "A broadband high-efficiency Doherty power amplifier with integrated compensating reactance," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 2014-2024, 2016.        Google Scholar

11. Chen, Xiaofan, Wenhua Chen, Fadhel M. Ghannouchi, Zhenghe Feng, and Yuanan Liu, "A broadband Doherty power amplifier based on continuous-mode technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4505-4517, 2016.        Google Scholar

12. Shi, Weimin, Songbai He, Xiaoyu Zhu, Bin Song, Zhitao Zhu, Gideon Naah, and Min Zhang, "Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 2, 1034-1046, 2018.        Google Scholar

13. Kim, Ildu, Junghwan Moon, Seunghoon Jee, and Bumman Kim, "Optimized design of a highly efficient three-stage Doherty PA using gate adaptation," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 10, 2562-2574, 2010.        Google Scholar

14. Pednekar, Prathamesh H., Eric Berry, and Taylor Wallis Barton, "RF-input load modulated balanced amplifier with octave bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5181-5191, Dec. 2017.        Google Scholar

15. Saad, Paul, Rui Hou, Richard Hellberg, and Bo Berglund, "A 1.8-3.8-GHz power amplifier with 40% efficiency at 8-dB power back-off," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 11, 4870-4882, 2018.        Google Scholar

16. Li, Meng, Jingzhou Pang, Yue Li, and Anding Zhu, "Ultra-wideband dual-mode Doherty power amplifier using reciprocal gate bias for 5G applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4246-4259, 2019.        Google Scholar

17. Komatsuzaki, Yuji, Rui Ma, Shuichi Sakata, Keigo Nakatani, and Shintaro Shinjo, "A dual-mode bias circuit enabled GaN Doherty amplifier operating in 0.85-2.05 GHz and 2.4-4.2 GHz," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 277-280, Los Angeles, CA, USA, 2020.

18. Pang, Jingzhou, Zhijiang Dai, Yue Li, Meng Li, and Anding Zhu, "Multiband dual-mode Doherty power amplifier employing phase periodic matching network and reciprocal gate bias for 5G applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 6, 2382-2397, 2020.        Google Scholar

19. Xu, J.-X., H. Chen, W. Chen, and X. Y. Zhang, "Broadband Doherty power amplifier using short ended λ/4 transmission lines based on the analysis of negative characteristic impedance," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 70, No. 2, 545-555, 2023.        Google Scholar

20. Chen, H., J.-X. Xu, and X. Y. Zhang, "Miniaturized broadband Doherty power amplifier using simplified output matching topology," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 69, No. 8, 3083-3092, 2022.        Google Scholar

21. Zhang, Jian Rong, Shao Yong Zheng, and Nan Yang, "An efficient broadband symmetrical Doherty power amplifier with extended back-off range," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 4, 1316-1320, 2023.        Google Scholar

22. Huang, Chaoyi, Songbai He, and Fei You, "Design of broadband modified class-J Doherty power amplifier with specific second harmonic terminations," IEEE Access, Vol. 6, 2531-2540, 2017.        Google Scholar

23. Chani-Cahuana, Jessica, Per Niklas Landin, Christian Fager, and Thomas Eriksson, "Iterative learning control for RF power amplifier linearization," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 9, 2778-2789, Sep. 2016.        Google Scholar

24. Rubio, Jorge Moreno, Jie Fang, Vittorio Camarchia, Roberto Quaglia, Marco Pirola, and Giovanni Ghione, "3-3.6-GHz wideband GaN Doherty power amplifier exploiting output compensation stages," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, 2012.        Google Scholar

25. De Carvalho, N. B. and J. C. Pedro, "Large- and small-signal IMD behavior of microwave power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 12, 2364-2374, 1999.        Google Scholar

26. Zhang, Lei, Kaixue Ma, Haipeng Fu, Feng Feng, and Yongqiang Wang, "A dual-band and dual-state Doherty power amplifier using metal-integrated and substrate-integrated suspended line technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 1, 402-415, 2022.        Google Scholar