Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-25
High Efficiency Low Power RF Energy Harvesting System for LTE Band and IoT Applications
By
Progress In Electromagnetics Research C, Vol. 161, 43-55, 2025
Abstract
The prospective applications of a rectangular microstrip patch antenna (MPA) in energy harvesting at radio frequencies (EH). The study aims to develop a rectenna that can detect and connect low power wireless devices to long-term evolution (LTE) networks by capturing low-power radio frequency (RF) signals radiated by cell towers, since the Kappa 438 antenna substrate with relative permittivity 4.25 has high 9 dB gain and 83% of measured efficiency. For the 2.5 GHz LTE band, stubs technology is being used for impedance matching and to decrease the overall rectenna size. The captured RF signals were altered into a usable DC voltage via a rectifier circuit in the manufactured rectenna, having the option of storing the voltage in a battery or utilizing it to power wearable, portable Internet of Things (IoT) systems and wireless sensors. The rectifier circuit is reduced in size by utilizing the SMD-Schottky diode type SMS7630 segments approach, further reducing the complexity and bulk of the rectenna. The rectenna obtains an efficiency of 88% when the RF input power is tuned to 0 dBm, while the maximum output DC voltage generated is 1.7 V when the radio waves power supply is 10 dBm. The rectenna with high gain and directivity has the capability to operate in low power environments, capturing weak radio frequency signals and working across -10 to 10 dBm power dynamic range. power dynamic range. These outcomes represent new contribution to our work which is relevant to other studies listed in Table 6 and demonstrated notable improvements.
Citation
Bilal Salman Taha, Zeti Akma Rhazali, Jahariah Binti Sampe, Norun Farihah Abdul Malek, Mohammed Yousif Zeain, and Adel M. Alkaseh, "High Efficiency Low Power RF Energy Harvesting System for LTE Band and IoT Applications," Progress In Electromagnetics Research C, Vol. 161, 43-55, 2025.
doi:10.2528/PIERC25022407
References

1. Nintanavongsa, Prusayon, Ufuk Muncuk, David Richard Lewis, and Kaushik Roy Chowdhury, "Design optimization and implementation for RF energy harvesting circuits," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 2, No. 1, 24-33, 2012.
doi:10.1109/jetcas.2012.2187106

2. Taha, Bilal S., "Design of quad band microstrip patch antenna for electromagnetic energy harvesting applications," Journal of Southwest Jiaotong University, Vol. 54, No. 5, 1-9, 2019.
doi:10.35741/issn.0258-2724.54.5.30

3. Zbitou, J., M. Latrach, and S. Toutain, "Hybrid rectenna and monolithic integrated zero-bias microwave rectifier," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 147-152, 2006.
doi:10.1109/tmtt.2005.860509

4. Taha, Bilal S. and Hamzah M. Marhoon, "Simulation and manufacturing of modified circular monopole microstrip antenna for UWB applications," International Journal of Advances in Applied Sciences (IJAAS), Vol. 10, No. 1, 70-78, 2021.
doi:10.11591/ijaas.v10.i1

5. Taha, Bilal S., Hamzah M. Marhoon, and Ahmed A. Naser, "Simulating of RF energy harvesting micro-strip patch antenna over 2.45 GHz," International Journal of Engineering & Technology, Vol. 7, No. 4, 5484-5488, 2018.
doi:10.14419/ijet.v7i4.27031

6. Reddy, M. Janga and D. Nagesh Kumar, "Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation," Hydrological Processes: An International Journal, Vol. 21, No. 21, 2897-2909, 2007.
doi:10.1002/hyp.6507

7. Fan, Ruinan, Junlin Mi, Jianwei Jing, Liping Yan, and Changjun Liu, "Conformal flexible omnidirectional rectenna array designed for application in IoT smart water meters," Progress In Electromagnetics Research C, Vol. 139, 159-166, 2024.
doi:10.2528/PIERC23100607

8. Li, Lei, Ruifeng Xu, Jingxu Cao, Xue Li, and Jingchang Nan, "A compact loop-shaped dual-band omnidirectional rectenna for RF energy harvesting," Progress In Electromagnetics Research M, Vol. 125, 1-9, 2024.
doi:10.2528/pierm24010703

9. Kim, Do Hyeon, Soo Young Oh, Hong Soo Park, and Sun K. Hong, "A power dividing rectenna system for high-power wireless power transfer for 2.45-GHz band," IEEE Access, Vol. 12, 86631-86638, 2024.
doi:10.1109/access.2024.3416169

10. Kar, Pankaj Chandra and Md. Ariful Islam, "Design and performance analysis of a rectenna system for charging a mobile phone from ambient EM waves," Heliyon, Vol. 9, No. 3, e13964, 2023.
doi:10.1016/j.heliyon.2023.e13964

11. Sidibé, Alassane, "Compact RF wireless power transmission system for battery-free geolocation tags," Ph.D. dissertation, University of Toulouse, Toulouse, France, 2023.

12. Farooq, Waqas, Masood Ur-Rehman, Qammer H. Abbasi, Khawaja Qasim Maqbool, and Khalid Qaraqe, "Study of a microstrip patch antenna with multiple circular slots for portable devices," 2015 IEEE 8th GCC Conference & Exhibition, 1-4, Muscat, Oman, 2015.
doi:10.1109/IEEEGCC.2015.7060037

13. Choi, Kae Won, Arif Abdul Aziz, Dedi Setiawan, Nguyen Minh Tran, Lorenz Ginting, and Dong In Kim, "Distributed wireless power transfer system for Internet of Things devices," IEEE Internet of Things Journal, Vol. 5, No. 4, 2657-2671, 2018.
doi:10.1109/jiot.2018.2790578

14. Arinze, Stella N., Emenike Raymond Obi, and Solomon H. Ebenuwa, "RF energy-harvesting techniques: Applications, recent developments, challenges, and future opportunities," Telecom, Vol. 6, No. 3, 45, 2025.

15. Thakur, Ekta, Dinesh Kumar, Naveen Jaglan, Samir Dev Gupta, and Shweta Srivastava, "Mathematical analysis of commonly used feeding techniques in rectangular microstrip patch antenna," Advances in Signal Processing and Communication: Select Proceedings of ICSC 2018, 27-35, 2018.
doi:10.1007/978-981-13-2553-3_3

16. Muhamad, Norhizatol Fashren, Rozana Aina Maulat Osman, M. S. Idris, F. Jamlos, and N. A. M. A. Hambali, "Microwave and electrical properties of SrTiO3 for DRA application," International Journal of Nanoelectronic Materials, Vol. 11, No. 21, 231-236, 2018.

17. Shinohara, Naoki, "Rectennas for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 20132009-20132009, 2013.
doi:10.1587/elex.10.20132009

18. Rastogi, Alok Kumar, Gazala Pravin, and Shanu Sharma, "Comparative study of rectangular and E-shaped microstrip patch antenna array for X-band applications," 195-203, Advanced Computing and Communication Technologies: Proceedings of the 11th ICACCT 2018, Jul. 2018.
doi:10.1007/978-981-13-0680-8_18

19. Zeain, M. Y., Maisarah Abu, Ayman A. Althuwayb, Hussein Alsariera, Ahmed Jamal Abdullah Al-Gburi, Ali Abdulateef Abdulbari, and Zahriladha Zakaria, "A new technique of FSS-based novel chair-shaped compact MIMO antenna to enhance the gain for sub-6GHz 5G applications," IEEE Access, Vol. 12, 49489-49507, 2024.
doi:10.1109/access.2024.3380013

20. Taha, Bilal and Taher AlSharabati, "Performance comparison between the FR4 substrate and the Rogers Kappa-438 substrate for microstrip patch antennas," International Journal of Computer Science and Mobile Computing, Vol. 9, No. 2, 1-12, 2020.

21. Wang, Yuchao, Jingwei Zhang, Yidan Su, Xianwu Jiang, Cheng Zhang, Lei Wang, and Qiang Cheng, "Efficiency enhanced seven-band omnidirectional rectenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 9, 8473-8484, 2022.
doi:10.1109/tap.2022.3177492

22. Zeain, M. Y., Zahriladha Zakaria, M. Abu, Ahmed Jamal Abdullah Al-Gburi, Hussein Alsariera, Apriana Toding, Sameer Alani, Monjed A. Al-Tarifi, Othman S. Al-Heety, Herwansyah Lago, et al. "Design of helical antenna for next generation wireless communication," Przegląd Elektrotechniczny, Vol. 11, 96-99, 2020.
doi:10.15199/48.2020.11.19

23. Mishra, R. G., J. Jayasinghe, G. Chathuranga, and R. Mishra, "Analysis of the relationship between substrate properties and patch dimensions in rectangular-shaped microstrip antennas," Proceedings of ICICCD 2017, Vol. 624, Springer Nature Link, Jan. 2018.

24. Toding, Apriana, Nicolaus Allu, Mohammed Yousif Zeain, and Amos Lukas, "Investigation performance minimum mse relay design for MIMO multi-relay networks," Solid State Technology, Vol. 63, No. 6, 15831-15837, 2020.

25. Zeain, M. Y., M. Abu, and S. N. Zabri, "Investigation of printed helical antenna using varied materials for ultra-wide band frequency," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 10, No. 2-7, 137-142, 2018.

26. Lou, Xin and Guo-Min Yang, "A dual linearly polarized rectenna using defected ground structure for wireless power transmission," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 9, 828-830, 2018.
doi:10.1109/lmwc.2018.2860285

27. Zeain, Mohammed Yousif, M. Abu, Z. Zakaria, Ahmed Jamal Abdullah Al-Gburi, R. Syahputri, A. Toding, and Sriyanto Sriyanto, "Design of a wideband strip helical antenna for 5G applications," Bulletin of Electrical Engineering and Informatics, Vol. 9, No. 5, 1958-1963, Oct. 2020.

28. Ibrahim, Husam Hamid, Mandeep Jit Singh, Samir Salem Al-Bawri, Sura Khalil Ibrahim, Mohammad Tariqul Islam, Ahmed Alzamil, and Md Shabiul Islam, "Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications," Sensors, Vol. 22, No. 11, 4144, 2022.

29. Kotani, Koji, Takao Komiyama, Yasunori Chonan, and Hiroyuki Yamaguchi, "Simple equation-based rectifier model and its application to efficient energy harvesting from amplitude modulation broadcasting radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 73, No. 6, 3376-3387, Jun. 2025.

30. Abdulbari, Ali Abdulateef, Sharul Kamal Abdul Rahim, Ping Jack Soh, Muhammad Hashim Dahri, Akaa Agbaeze Eteng, and Mohammed Yousif Zeain, "A review of hybrid couplers: State-of-the-art, applications, design issues and challenges," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 34, No. 5, e2919, 2021.

31. Zeain, Mohammed Yousif, Maisarah Abu, Apriana Toding, Zahriladha Zakaria, Hussein Alsariera, Ihsan Ullah, Ali Abdulateef Abdulbari, Hamizan Yon, Bilal Salman Taha, and Muhammad Inam Abbasi, "Advanced helical antenna design for X-band applications using AI," Progress In Electromagnetics Research C, Vol. 153, 201-211, 2025.
doi:10.2528/pierc25011305

32. Song, Chaoyun, Yi Huang, Paul Carter, Jiafeng Zhou, Sheng Yuan, Qian Xu, and Muayad Kod, "A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3160-3171, 2016.
doi:10.1109/tap.2016.2565697

33. Wang, Meng, Lan Yang, and Yanyan Shi, "A dual-port microstrip rectenna for wireless energy harvest at LTE band," AEU --- International Journal of Electronics and Communications, Vol. 126, 153451, 2020.
doi:10.1016/j.aeue.2020.153451

34. Palazzi, Valentina, Jimmy Hester, Jo Bito, Federico Alimenti, Christos Kalialakis, Ana Collado, Paolo Mezzanotte, Apostolos Georgiadis, Luca Roselli, and Manos M. Tentzeris, "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 366-379, 2018.
doi:10.1109/tmtt.2017.2721399

35. Palazzi, V., C. Kalialakis, F. Alimenti, P. Mezzanotte, L. Roselli, A. Collado, and A. Georgiadis, "Performance analysis of a ultra-compact low-power rectenna in paper substrate for RF energy harvesting," 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), 65-68, Phoenix, AZ, USA, 2017.
doi:10.1109/WISNET.2017.7878757

36. Sun, Shihao, Yuchao Wang, Bingyang Li, Hanyu Xue, Cheng Zhang, Feng Xu, and Chaoyun Song, "Dual-port six-band rectenna with enhanced power conversion efficiency at ultra-low input power," Sensors, Vol. 24, No. 23, 7433, 2024.
doi:10.3390/s24237433

37. Elshaekh, Dalia N., Hesham A. Mohamed, Lobna Yehia Abd El Menam, Karam A. Sharshar, and Somaya I. Kayed, "Multiband printed rectenna for radio frequency energy harvesting (RF-EH)," Discover Electronics, Vol. 2, No. 1, 39, 2025.
doi:10.1007/s44291-025-00082-x

38. Eltresy, Nermeen A., Osama M. Dardeer, Awab Al-Habal, Esraa Elhariri, Ali H. Hassan, Ahmed Khattab, Dalia N. Elsheakh, Shereen A. Taie, Hassan Mostafa, Hala A. Elsadek, and Esmat A. Abdallah, "RF energy harvesting IoT system for museum ambience control with deep learning," Sensors, Vol. 19, No. 20, 4465, Oct. 2019.
doi:10.3390/s19204465

39. Kayed, Somaya I., Dalia N. Elsheakh, Hesham A. Mohamed, and Heba A. Shawkey, "Multiband microstrip rectenna using ZnO-based planar schottky diode for RF energy harvesting applications," Micromachines, Vol. 14, No. 5, 1006, May 2023.
doi:10.3390/mi14051006

40. Muhammad, Surajo, Jun Jiat Tiang, and Suhandi Bujang, "RF rectifier design for efficient WPT in medical implants: A wideband approach for white space WiFi and LTE applications," 2024 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 347-350, Langkawi, Kedah, Malaysia, Feb. 2024.
doi:10.1109/apace62360.2024.10877306