Vol. 133
Latest Volume
All Volumes
PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-04-29
Comparative Assessment of Two Numerical Methods for Eddy Current Nondestructive Evaluation: Insights from Benchmark Studies
By
Progress In Electromagnetics Research M, Vol. 133, 61-71, 2025
Abstract
Numerical modeling of eddy current (EC) phenomena is pivotal in nondestructive evaluation (NDE). It has become invaluable in NDE industries, contributing to probe design, inspection procedures, defect characterization, model training, and results interpretation. This study comprehensively explores two numerical methods - Volume Integral Method (VIM) and Finite Element Method (FEM) to assess their suitability for EC NDE. Four test cases involving varying geometries, defect types, and probe configurations were modeled to compare computational compatibility. Numerical results are evaluated for their accuracy, efficiency, and practical implications. Results indicate a reasonable correlation between the two methods, with VIM excelling at computational efficiency for simpler geometries, and FEM demonstrating robustness for complex configurations. The findings highlight the strengths and limitations of each method, aiding users in selecting appropriate techniques for defect characterization and optimizing inspection conditions.
Citation
Rebeka Sultana, Mingyang Lu, Yuan Ji, John C. Aldrin, and Jiming Song, "Comparative Assessment of Two Numerical Methods for Eddy Current Nondestructive Evaluation: Insights from Benchmark Studies," Progress In Electromagnetics Research M, Vol. 133, 61-71, 2025.
doi:10.2528/PIERM25022505
References

1. Kriezis, E. E., T. D. Tsiboukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and applications," Proceedings of the IEEE, Vol. 80, No. 10, 1559-1589, 1992.
doi:10.1109/5.168666

2. Tavakoli, Mohammad Hossein, Hossein Karbaschi, and Feridoun Samavat, "Computational modeling of induction heating process," Progress In Electromagnetics Research Letters, Vol. 11, 93-102, 2009.

3. Bae, Jin-Su and Sang-Young Kim, "Hot wire inspection using eddy current," IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), Vol. 2, 962-965, Budapest, Hungary, May 2001.

4. Chebout, Mohammed, Hakim Azizi, and Mohammed Rachid Mekideche, "A model assisted probability of detection approach for ECNDT of hidden defect in aircraft structures," Progress In Electromagnetics Research Letters, Vol. 95, 1-8, 2020.

5. Vyroubal, D., "Impedance of the eddy-current displacement probe: The transformer model," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, 384-391, 2004.

6. Theodoulidis, Theodoros P. and Epameinondas E. Kriezis, "Impedance evaluation of rectangular coils for eddy current testing of planar media," NDT & E International, Vol. 35, No. 6, 407-414, 2002.

7. Zhou, H. T., K. Hou, H. L. Pan, J. J. Chen, and Q. M. Wang, "Study on the optimization of eddy current testing coil and the defect detection sensitivity," Procedia Engineering, Vol. 130, 1649-1657, 2015.

8. Yang, Xu, Yongbao Feng, and Shuzhi Li, "Influence of measuring coil geometry on detection performance of eddy current sensor," IOP Conference Series: Materials Science and Engineering, Vol. 452, No. 4, 042045, 2018.

9. Mohseni, Ehsan, Demartonne Ramos França, Martin Viens, Wen Fang Xie, and Baoguang Xu, "Finite element modelling of a reflection differential split-D eddy current probe scanning surface notches," Journal of Nondestructive Evaluation, Vol. 39, 1-14, 2020.

10. Mooers, Ryan D., John C. Aldrin, and Jeremy S. Knopp, "Realistic split D differential probe model validation," AIP Conference Proceedings, Vol. 1650, No. 1, 385-394, 2015.

11. Das, Nilangshu K., Parthasarathi Barat, Sounak Dey, and Tammana Jayakumar, "Design of miniature coil to generate uniform magnetic field," Progress In Electromagnetics Research M, Vol. 34, 99-105, 2013.

12. Reverdy, Frederic and Nicolas Dominguez, "NDT modeling tools applied to the aeronautic industry: Examples in CIVA," 5th International Symposium on NDT in Aerospace, Singapore, Nov. 2013.

13. Maurice, L., V. Costan, E. Guillot, and P. Thomas, "Eddy current NDE performance demonstrations using simulation tools," AIP Conference Proceedings, Vol. 1511, No. 1, 464-471, 2013.

14. Mayos, M., O. Moreau, V. Costan, C. Gilles-Pascaud, C. Reboud, and F. Buvat, "A benchmark-based approach for the validation of eddy current simulation codes in support of nuclear power plants inspection," Electromagnetic Nondestructive Evaluation (XIII), 191-198, IOS Press, 2010.

15. Chen, Zhenmao, Noritaka Yusa, and Kenzo Miya, "Some advances in numerical analysis techniques for quantitative electromagnetic nondestructive evaluation," Nondestructive Testing and Evaluation, Vol. 24, No. 1-2, 69-102, 2009.

16. Biro, O., I. Bardi, K. Preis, W. Renhart, and K. R. Richter, "A finite element formulation for eddy current carrying ferromagnetic thin sheets," IEEE Transactions on Magnetics, Vol. 33, No. 2, 1173-1178, 1997.

17. Xie, Yaoqin, Feng Lu, and Xinshan Ma, "Computation of eddy current problems by the finite volume method," ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501), Vol. 2, 1117-1120, Shenyang, China, 2001.

18. Ratsakou, A., C. Reboud, A. Skarlatos, and D. Lesselier, "Fast models dedicated to simulation of eddy current thermography," Electromagnetic Non-Destructive Evaluation (XXI), 175-182, IOS Press, 2018.

19. Sun, L. E. and Weng Cho Chew, "A novel formulation of the volume integral equation for electromagnetic scattering," Waves in Random and Complex Media, Vol. 19, No. 1, 162-180, 2009.

20. Sabbagh, Harold A., "A volume integral code for eddy-current nondestructive evaluation," Applied Computational Electromagnetics Society Journal (ACES), Vol. 4, No. 1, 3-22, 1989.

21. Sabbagh, H. A., R. K. Murphy, E. H. Sabbagh, J. C. Aldrin, and J. S. Knopp, Computational Electromagnetics and Model-based Inversion, 39-43, Springer-Verlag, New York, NY, 2013.
doi:10.1007/978-1-4419-8429-6

22. Zeng, Zhiwei, Lalita Udpa, Satish S. Udpa, and Michael Shiu C. Chan, "Reduced magnetic vector potential formulation in the finite element analysis of eddy current nondestructive testing," IEEE Transactions on Magnetics, Vol. 45, No. 3, 964-967, 2009.

23. Lu, Mingyang, Anthony Peyton, and Wuliang Yin, "Acceleration of frequency sweeping in eddy-current computation," IEEE Transactions on Magnetics, Vol. 53, No. 7, 2017.

24. Sultana, R., M. Lu, Y. Ji, J. C. Aldrin, and J. Song, "Evaluating eddy current simulation tools: A comparative analysis with benchmark cases," 32nd ASNT Research Symposium, Pittsburgh, PA, Jun. 2024.

25. Victor Technologies, L., VIC-3D eddy-current NDE software, [Online]. Available: http://www.sabbagh.com/products.html, 2013.

26. COMSOL, I. AC/DC module user’s guide, version 6.0, [Online]. Available: https://doc.comsol.com.

27. Team workshop problem 15 rectangular slot in a thick plate: A problem in nondestructive evaluation, [Online]. Available: https://www.compumag.org/jsite/images/stories/TEAM/probl em15.pdf.

28. Xie, H., Y. Ji, and J. Bowler, Eddy current pancake coil measurements on a longitudinal through-wall notch in an inconel tube, [Online]. Available: https://www.wfndec.org/benchmarkproblems, 2012.

29. Foucher, F., L. Maurice, T. Sollier, C. Reboud, D. François, A. Trillon, and P. Thomas, "Evaluating eddy current simulation tools: A comparative analysis with benchmark cases," 11th European Conference on Nondestructive Testing (ECNDT), Prague, Czech Republic, Oct. 2014.

30. CST studio suite, [Online]. Available: https: //www.3ds.com/products/simulia/cst-studio-suite, 2024.

31. Aoukili, Abdeslam and Abdellatif Khamlichi, "Modeling an eddy-current probe for damage detection of surface cracks in metallic parts," Procedia Technology, Vol. 22, 527-534, 2016.