Vol. 134
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-07-24
Characterization of Inhomogeneous FDM Manufactured Materials: Comparison of Free-Space and Mixing Laws
By
Progress In Electromagnetics Research M, Vol. 134, 59-67, 2025
Abstract
The use of additive manufacturing for the manufacturing of complex materials requires suitable characterization methods. A free-space measurement method is used for the real permittivity characterization. Depending on the considered printing pattern, the experimental result shows good agreement with theoretical values calculated using mixing laws. The setup gives promising results with characterizations of the permittivity, and it highlights the importance of taking into account the printing pattern used according to the desired effective permittivity.
Citation
Chloé Scotti, Stefan Enoch, Max Groisil, and Nicolas Malléjac, "Characterization of Inhomogeneous FDM Manufactured Materials: Comparison of Free-Space and Mixing Laws," Progress In Electromagnetics Research M, Vol. 134, 59-67, 2025.
doi:10.2528/PIERM25031904
References

1. Baer, Christoph, "A compensation method for reducing the influence of printing voids on the wave propagation properties of FDM-manufactured dielectric waveguides," 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), 89-93, Lisbon, Portugal, 2024.
doi:10.1109/iceaa61917.2024.10701745

2. Hehenberger, Simon P., Stefano Caizzone, and Alexander G. Yarovoy, "Additive manufacturing of linear continuous permittivity profiles and their application to cylindrical dielectric resonator antennas," IEEE Open Journal of Antennas and Propagation, Vol. 4, 373-382, 2023.
doi:10.1109/ojap.2023.3258147

3. Vial, Benjamin, Henry Giddens, and Yang Hao, "Multi-material additive manufacturing of microwave devices," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-5, Madrid, Spain, 2022.
doi:10.23919/eucap53622.2022.9769458

4. Kristiawan, Ruben Bayu, Fitrian Imaduddin, Dody Ariawan, Ubaidillah, and Zainal Arifin, "A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters," Open Engineering, Vol. 11, No. 1, 639-649, 2021.
doi:10.1515/eng-2021-0063

5. Colella, Riccardo, Francesco Paolo Chietera, Andrea Michel, Giacomo Muntoni, GiovanniAndrea Casula, Giorgio Montisci, and Luca Catarinucci, "Electromagnetic characterisation of conductive 3D‐Printable filaments for designing fully 3D‐Printed antennas," IET Microwaves, Antennas & Propagation, Vol. 16, No. 11, 687-698, 2022.
doi:10.1049/mia2.12278

6. Persad, Jeevan and Sean Rocke, "Impact of 3D printing infill patterns on the effective permittivity of 3D printed substrates," IEEE Journal of Microwaves, Vol. 4, No. 2, 277-292, 2024.
doi:10.1109/jmw.2024.3369599

7. Gözüm, Abdullah, Mete Bakir, and Oğuzhan Akgöl, "Electromagnetic characterization of 3D printed metamaterial absorber with conductive paint," Journal of Additive Manufacturing Technologies, Vol. 2, No. 1, 706-706, 2022.
doi:10.3390/ma16134776

8. De Oliveira Neto, Antonio M., João F. Justo, Wesley Beccaro, and Alexandre M. de Oliveira, "Designing and building radio frequency devices with tailored dielectric properties using additive manufacturing," Microwave and Optical Technology Letters, Vol. 65, No. 3, 777-784, 2023.
doi:10.1002/mop.33571

9. Alimenti, Andrea, Nicola Pompeo, Kostiantyn Torokhtii, Erika Pittella, Emanuele Piuzzi, and Enrico Silva, "A system to measure the complex permittivity of 3D-printing materials," 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 1-4, Vienna, Austria, 2022.
doi:10.1109/fleps53764.2022.9781532

10. Andersson, S., ``Feasibility study on additive manufacturing of dielectrics in antenna structures", Master thesis, Aalto University, Espoo, Finland, 2023.
doi:10.1115/gt2016-56594

11. Nguyen, T. A., ``Electromagnetic properties of 3D printing materials'', Master’s thesis, Tampere University, Tampere, Finland, 2024.
doi:10.1364/oe.559881

12. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520

13. Migalin, Mikhail M., Andrey V. Kovalev, Samir R. Gadzhiev, Vladislav S. Kuzmin, Lev N. Libin, and Vladimir A. Fleyteng, "Complex dielectric permittivity measurement of 3D printing resin FTD nano clear in the 1-10 GHz band," 2023 Seminar on Microelectronics, Dielectrics and Plasmas (MDP), 82-85, Saint Petersburg, Russian Federation, 2023.
doi:10.1109/mdp60436.2023.10424208

14. Deffenbaugh, Paul I., Raymond C. Rumpf, and Kenneth H. Church, "Broadband microwave frequency characterization of 3-D printed materials," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 12, 2147-2155, 2013.
doi:10.1109/tcpmt.2013.2273306

15. Fessaras, Theodore, Zachary Larimore, Paul Parsons, Kelvin Nicholson, and Mark Mirotznik, "Custom hopper fed additive manufacturing system for printing high permittivity materials and radio frequency structures," Available at SSRN 4603609, 2024.
doi:10.2139/ssrn.4603609

16. Filbert, Joseph, Aaron Barvincak, Mohammad Tayeb Al Qaseer, and Reza Zoughi, "Microwave characterization of metal powder in additive manufacturing (AM)," IEEE Open Journal of Instrumentation and Measurement, Vol. 3, 1-13, 2024.
doi:10.1109/ojim.2024.3396226

17. Kattel, Bibek, Utsab Ayan, Madara Mohoppu, Byron Villacorta, and Winn Elliott Hutchcraft, "Enhancing permittivity of 3D printing filaments via nanocompounding for electromagnetic applications," SoutheastCon 2024, 1016-1021, Atlanta, GA, USA, 2024.
doi:10.1109/southeastcon52093.2024.10500220

18. Raj, Ratnesh, Annada Prasad Moharana, and Amit Rai Dixit, "Design and fabrication of flexible woodpile structured nanocomposite for microwave absorption using material extrusion additive technique," Additive Manufacturing, Vol. 79, 103935, 2024.
doi:10.1016/j.addma.2023.103935

19. Pérez-Escribano, Mario, "Characterization techniques for microwave and millimeter-wave circuit design using additive manufacturing and multiconductor transmission lines," Ph.D. dissertation, University of Málaga, Málaga, Andalusia, Spain, 2022.
doi:10.36227/techrxiv.173933266.65122687/v1

20. Lekas, Sophie, Ross Drummond, Patrick S. Grant, and Stephen R. Duncan, "Control of additive manufacturing for radio frequency devices with spatially varying dielectric properties," IEEE Transactions on Control Systems Technology, Vol. 32, No. 5, 1579-1589, 2024.
doi:10.1109/tcst.2023.3345176

21. Faget, Xavier, Amélie Litman, Eva Dieudonné, Stefan Enoch, and Nicolas Malléjac, "Free-space characterization of the permeability of inhomogeneous magneto-dielectric materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5035-5045, 2017.
doi:10.1109/tmtt.2017.2722402

22. Scotti, C., K. Aït-Otmane, F. Duverger, M. Groisil, P. Jomin, S. Enoch, A. Litman, and N. Malléjac, "Non-Destructive characterization of magneto-dielectric materials using a Born approximation model," 2023 IEEE Conference on Antenna Measurements and Applications (CAMA), 78-81, Genoa, Italy, 2023.
doi:10.1109/cama57522.2023.10352779

23. Han, Mangui and Yutong Jiang, "Gigahertz permeability of Fe-Cu-Nb-Si-B ferromagnetic microwires and micromagnetics simulations," Materials Today Communications, Vol. 38, 107693, 2024.
doi:10.1016/j.mtcomm.2023.107693

24. Rozanov, K. N., Z. W. Li, L. F. Chen, and M. Y. Koledintseva, "Microwave permeability of Co2Z composites," Journal of Applied Physics, Vol. 97, No. 1, 013905, 2005.
doi:10.1063/1.1827911

25. Scotti, C., M. Groisil, M. Latrach, A. Litman, S. Enoch, and N. Malléjac, "Imagerie quantitative de matériaux magnéto diélectriques hétérogènes : Validité de l’approximation de born et pertes par diffusion," 23ème Journées Nationales Microondes 2024, 2024.
doi:10.1016/j.ddes.2014.10.001

26. Karkkainen, K. K., A. H. Sihvola, and K. I. Nikoskinen, "Effective permittivity of mixtures: Numerical validation by the FDTD method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 3, 1303-1308, 2000.
doi:10.1109/36.843023

27. Choy, Tuck C., Effective Medium Theory: Principles and Applications, Vol. 165, Oxford University Press, 2015.
doi:10.1093/acprof:oso/9780198705093.001.0001

28. Merrill, W. M., R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, "Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 142-148, 1999.
doi:10.1109/8.753004

29. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of the effective magnetic permeability of multiphase materials," Journal of Applied Physics, Vol. 33, No. 10, 3125-3131, 1962.
doi:10.1063/1.1728579

30. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045

31. Odelevskiy, V. I., "Generalized conductivity of heterogeneous systems," Zh. Tekh. Fiz, Vol. 21, No. 6, 678-685, 1951.

32. Starostenko, S. N., K. N. Rozanov, V. Bovtun, and A. O. Shiryaev, "A mixing formula accounting for inversion of matrix structure," AIP Advances, Vol. 10, No. 1, 015115, 2020.
doi:10.1063/1.5133470

33. Johansson, M., C. L. Holloway, and E. F. Kuester, "Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 728-736, 2005.
doi:10.1109/tap.2004.841320

34. Ma, Lianhua and Qingsheng Yang, "On the homogenization analysis of electromagnetic properties for irregular honeycombs," CMC --- Computers Materials & Continua, Vol. 40, No. 2, 79-97, 2014.
doi:10.4028/www.scientific.net/kem.443.551

35. Liu, L., C. Fan, N. B. Zhu, Z. Y. Zhao, and R. P. Liu, "Effective electromagnetic properties of honeycomb substrate coated with dielectric or magnetic layer," Applied Physics A, Vol. 116, 901-905, 2014.
doi:10.1007/s00339-014-8458-4

36. Zhao, Yu-Chen, Jiang-Fan Liu, Zhong-Guo Song, and Xiao-Li Xi, "Novel closed-form expressions for effective electromagnetic parameters of honeycomb radar-absorbing structure," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1768-1778, 2016.
doi:10.1109/tap.2016.2539385

37. Qiu, Kepeng, Shuqi Feng, Chen Wu, Zijun Liu, et al. "Calculation of effective permittivity and optimization of absorption property of honeycomb cores with absorbing coatings," Materials Science, Vol. 22, No. 3, 317-322, 2016.
doi:10.5755/j01.ms.22.3.8456

38. Kipp, Jonathan, Fabian R. Lux, Thorben Pürling, Abigail Morrison, Stefan Blügel, Daniele Pinna, and Yuriy Mokrousov, "Machine learning inspired models for Hall effects in non-collinear magnets," Machine Learning: Science and Technology, Vol. 5, No. 2, 025060, 2024.
doi:10.1088/2632-2153/ad51ca

39. Schaal, Christoph, Steffen Tai, and Ajit Mal, "On the assumption of transverse isotropy of a honeycomb sandwich panel for NDT applications," Health Monitoring of Structural and Biological Systems 2017, Vol. 10170, 428-435, 2017.
doi:10.1117/12.2260092

40. Yuan, Xiao-Wei, Zeng Yang, Ming-Jiang Gou, Ming-Ling Yang, and Xin-Qing Sheng, "A flexible and efficient method for the analysis of electromagnetic scattering by inhomogeneous objects with honeycomb structures," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 541-545, 2022.
doi:10.1109/lawp.2021.3138133

41. Liu, Tong, Yu Pang, Mu Zhu, and Satoru Kobayashi, "Microporous Co@ CoO nanoparticles with superior microwave absorption properties," Nanoscale, Vol. 6, No. 4, 2447-2454, 2014.
doi:10.1039/c3nr05238a

42. Ollendorff, Franz, "Magnetostatik der massekerne," Archiv für Elektrotechnik, Vol. 25, 436-447, 1931.
doi:10.1007/bf01656937