1. Baer, Christoph, "A compensation method for reducing the influence of printing voids on the wave propagation properties of FDM-manufactured dielectric waveguides," 2024 International Conference on Electromagnetics in Advanced Applications (ICEAA), 89-93, Lisbon, Portugal, 2024.
doi:10.1109/iceaa61917.2024.10701745
2. Hehenberger, Simon P., Stefano Caizzone, and Alexander G. Yarovoy, "Additive manufacturing of linear continuous permittivity profiles and their application to cylindrical dielectric resonator antennas," IEEE Open Journal of Antennas and Propagation, Vol. 4, 373-382, 2023.
doi:10.1109/ojap.2023.3258147
3. Vial, Benjamin, Henry Giddens, and Yang Hao, "Multi-material additive manufacturing of microwave devices," 2022 16th European Conference on Antennas and Propagation (EuCAP), 1-5, Madrid, Spain, 2022.
doi:10.23919/eucap53622.2022.9769458
4. Kristiawan, Ruben Bayu, Fitrian Imaduddin, Dody Ariawan, Ubaidillah, and Zainal Arifin, "A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters," Open Engineering, Vol. 11, No. 1, 639-649, 2021.
doi:10.1515/eng-2021-0063
5. Colella, Riccardo, Francesco Paolo Chietera, Andrea Michel, Giacomo Muntoni, GiovanniAndrea Casula, Giorgio Montisci, and Luca Catarinucci, "Electromagnetic characterisation of conductive 3D‐Printable filaments for designing fully 3D‐Printed antennas," IET Microwaves, Antennas & Propagation, Vol. 16, No. 11, 687-698, 2022.
doi:10.1049/mia2.12278
6. Persad, Jeevan and Sean Rocke, "Impact of 3D printing infill patterns on the effective permittivity of 3D printed substrates," IEEE Journal of Microwaves, Vol. 4, No. 2, 277-292, 2024.
doi:10.1109/jmw.2024.3369599
7. Gözüm, Abdullah, Mete Bakir, and Oğuzhan Akgöl, "Electromagnetic characterization of 3D printed metamaterial absorber with conductive paint," Journal of Additive Manufacturing Technologies, Vol. 2, No. 1, 706-706, 2022.
doi:10.3390/ma16134776
8. De Oliveira Neto, Antonio M., João F. Justo, Wesley Beccaro, and Alexandre M. de Oliveira, "Designing and building radio frequency devices with tailored dielectric properties using additive manufacturing," Microwave and Optical Technology Letters, Vol. 65, No. 3, 777-784, 2023.
doi:10.1002/mop.33571
9. Alimenti, Andrea, Nicola Pompeo, Kostiantyn Torokhtii, Erika Pittella, Emanuele Piuzzi, and Enrico Silva, "A system to measure the complex permittivity of 3D-printing materials," 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 1-4, Vienna, Austria, 2022.
doi:10.1109/fleps53764.2022.9781532
10. Andersson, S., ``Feasibility study on additive manufacturing of dielectrics in antenna structures", Master thesis, Aalto University, Espoo, Finland, 2023.
doi:10.1115/gt2016-56594
11. Nguyen, T. A., ``Electromagnetic properties of 3D printing materials'', Master’s thesis, Tampere University, Tampere, Finland, 2024.
doi:10.1364/oe.559881
12. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520
13. Migalin, Mikhail M., Andrey V. Kovalev, Samir R. Gadzhiev, Vladislav S. Kuzmin, Lev N. Libin, and Vladimir A. Fleyteng, "Complex dielectric permittivity measurement of 3D printing resin FTD nano clear in the 1-10 GHz band," 2023 Seminar on Microelectronics, Dielectrics and Plasmas (MDP), 82-85, Saint Petersburg, Russian Federation, 2023.
doi:10.1109/mdp60436.2023.10424208
14. Deffenbaugh, Paul I., Raymond C. Rumpf, and Kenneth H. Church, "Broadband microwave frequency characterization of 3-D printed materials," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 12, 2147-2155, 2013.
doi:10.1109/tcpmt.2013.2273306
15. Fessaras, Theodore, Zachary Larimore, Paul Parsons, Kelvin Nicholson, and Mark Mirotznik, "Custom hopper fed additive manufacturing system for printing high permittivity materials and radio frequency structures," Available at SSRN 4603609, 2024.
doi:10.2139/ssrn.4603609
16. Filbert, Joseph, Aaron Barvincak, Mohammad Tayeb Al Qaseer, and Reza Zoughi, "Microwave characterization of metal powder in additive manufacturing (AM)," IEEE Open Journal of Instrumentation and Measurement, Vol. 3, 1-13, 2024.
doi:10.1109/ojim.2024.3396226
17. Kattel, Bibek, Utsab Ayan, Madara Mohoppu, Byron Villacorta, and Winn Elliott Hutchcraft, "Enhancing permittivity of 3D printing filaments via nanocompounding for electromagnetic applications," SoutheastCon 2024, 1016-1021, Atlanta, GA, USA, 2024.
doi:10.1109/southeastcon52093.2024.10500220
18. Raj, Ratnesh, Annada Prasad Moharana, and Amit Rai Dixit, "Design and fabrication of flexible woodpile structured nanocomposite for microwave absorption using material extrusion additive technique," Additive Manufacturing, Vol. 79, 103935, 2024.
doi:10.1016/j.addma.2023.103935
19. Pérez-Escribano, Mario, "Characterization techniques for microwave and millimeter-wave circuit design using additive manufacturing and multiconductor transmission lines," Ph.D. dissertation, University of Málaga, Málaga, Andalusia, Spain, 2022.
doi:10.36227/techrxiv.173933266.65122687/v1
20. Lekas, Sophie, Ross Drummond, Patrick S. Grant, and Stephen R. Duncan, "Control of additive manufacturing for radio frequency devices with spatially varying dielectric properties," IEEE Transactions on Control Systems Technology, Vol. 32, No. 5, 1579-1589, 2024.
doi:10.1109/tcst.2023.3345176
21. Faget, Xavier, Amélie Litman, Eva Dieudonné, Stefan Enoch, and Nicolas Malléjac, "Free-space characterization of the permeability of inhomogeneous magneto-dielectric materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 12, 5035-5045, 2017.
doi:10.1109/tmtt.2017.2722402
22. Scotti, C., K. Aït-Otmane, F. Duverger, M. Groisil, P. Jomin, S. Enoch, A. Litman, and N. Malléjac, "Non-Destructive characterization of magneto-dielectric materials using a Born approximation model," 2023 IEEE Conference on Antenna Measurements and Applications (CAMA), 78-81, Genoa, Italy, 2023.
doi:10.1109/cama57522.2023.10352779
23. Han, Mangui and Yutong Jiang, "Gigahertz permeability of Fe-Cu-Nb-Si-B ferromagnetic microwires and micromagnetics simulations," Materials Today Communications, Vol. 38, 107693, 2024.
doi:10.1016/j.mtcomm.2023.107693
24. Rozanov, K. N., Z. W. Li, L. F. Chen, and M. Y. Koledintseva, "Microwave permeability of Co2Z composites," Journal of Applied Physics, Vol. 97, No. 1, 013905, 2005.
doi:10.1063/1.1827911
25. Scotti, C., M. Groisil, M. Latrach, A. Litman, S. Enoch, and N. Malléjac, "Imagerie quantitative de matériaux magnéto diélectriques hétérogènes : Validité de l’approximation de born et pertes par diffusion," 23ème Journées Nationales Microondes 2024, 2024.
doi:10.1016/j.ddes.2014.10.001
26. Karkkainen, K. K., A. H. Sihvola, and K. I. Nikoskinen, "Effective permittivity of mixtures: Numerical validation by the FDTD method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 3, 1303-1308, 2000.
doi:10.1109/36.843023
27. Choy, Tuck C., Effective Medium Theory: Principles and Applications, Vol. 165, Oxford University Press, 2015.
doi:10.1093/acprof:oso/9780198705093.001.0001
28. Merrill, W. M., R. E. Diaz, M. M. LoRe, M. C. Squires, and N. G. Alexopoulos, "Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 142-148, 1999.
doi:10.1109/8.753004
29. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of the effective magnetic permeability of multiphase materials," Journal of Applied Physics, Vol. 33, No. 10, 3125-3131, 1962.
doi:10.1063/1.1728579
30. Sihvola, A. H. and J. A. Kong, "Effective permittivity of dielectric mixtures," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045
31. Odelevskiy, V. I., "Generalized conductivity of heterogeneous systems," Zh. Tekh. Fiz, Vol. 21, No. 6, 678-685, 1951.
32. Starostenko, S. N., K. N. Rozanov, V. Bovtun, and A. O. Shiryaev, "A mixing formula accounting for inversion of matrix structure," AIP Advances, Vol. 10, No. 1, 015115, 2020.
doi:10.1063/1.5133470
33. Johansson, M., C. L. Holloway, and E. F. Kuester, "Effective electromagnetic properties of honeycomb composites, and hollow-pyramidal and alternating-wedge absorbers," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 728-736, 2005.
doi:10.1109/tap.2004.841320
34. Ma, Lianhua and Qingsheng Yang, "On the homogenization analysis of electromagnetic properties for irregular honeycombs," CMC --- Computers Materials & Continua, Vol. 40, No. 2, 79-97, 2014.
doi:10.4028/www.scientific.net/kem.443.551
35. Liu, L., C. Fan, N. B. Zhu, Z. Y. Zhao, and R. P. Liu, "Effective electromagnetic properties of honeycomb substrate coated with dielectric or magnetic layer," Applied Physics A, Vol. 116, 901-905, 2014.
doi:10.1007/s00339-014-8458-4
36. Zhao, Yu-Chen, Jiang-Fan Liu, Zhong-Guo Song, and Xiao-Li Xi, "Novel closed-form expressions for effective electromagnetic parameters of honeycomb radar-absorbing structure," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1768-1778, 2016.
doi:10.1109/tap.2016.2539385
37. Qiu, Kepeng, Shuqi Feng, Chen Wu, Zijun Liu, et al. "Calculation of effective permittivity and optimization of absorption property of honeycomb cores with absorbing coatings," Materials Science, Vol. 22, No. 3, 317-322, 2016.
doi:10.5755/j01.ms.22.3.8456
38. Kipp, Jonathan, Fabian R. Lux, Thorben Pürling, Abigail Morrison, Stefan Blügel, Daniele Pinna, and Yuriy Mokrousov, "Machine learning inspired models for Hall effects in non-collinear magnets," Machine Learning: Science and Technology, Vol. 5, No. 2, 025060, 2024.
doi:10.1088/2632-2153/ad51ca
39. Schaal, Christoph, Steffen Tai, and Ajit Mal, "On the assumption of transverse isotropy of a honeycomb sandwich panel for NDT applications," Health Monitoring of Structural and Biological Systems 2017, Vol. 10170, 428-435, 2017.
doi:10.1117/12.2260092
40. Yuan, Xiao-Wei, Zeng Yang, Ming-Jiang Gou, Ming-Ling Yang, and Xin-Qing Sheng, "A flexible and efficient method for the analysis of electromagnetic scattering by inhomogeneous objects with honeycomb structures," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 541-545, 2022.
doi:10.1109/lawp.2021.3138133
41. Liu, Tong, Yu Pang, Mu Zhu, and Satoru Kobayashi, "Microporous Co@ CoO nanoparticles with superior microwave absorption properties," Nanoscale, Vol. 6, No. 4, 2447-2454, 2014.
doi:10.1039/c3nr05238a
42. Ollendorff, Franz, "Magnetostatik der massekerne," Archiv für Elektrotechnik, Vol. 25, 436-447, 1931.
doi:10.1007/bf01656937