Vol. 158
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-17
Ml-Based Hybrid Approach for Improved Indoor Source Localization
By
Progress In Electromagnetics Research C, Vol. 158, 253-260, 2025
Abstract
The field of navigation has been relentlessly evolving to fulfil its long-standing objective of building a highly accurate universal navigation system. However, in highly urban and indoor locations, line-of-sight signals cannot be guaranteed, and conventional terrestrial-based and satellite-based techniques cannot perform optimally. This paper strives to establish navigation via signals of opportunity (NAVSOP) by proposing a Wireless Fidelity (Wi-Fi)-based indoor localization method using the Received Signal Strength Indicator (RSSI) technique. This proposed method employs the fingerprinting along with the K-Nearest Neighbour (KNN) and again KNN with Inverse Distance Weighting (IDW) approach to offer superior position estimation accuracy. In this paper, we have developed a new neighbourhood dataset by expanding target neighbourhood locations by random point generator algorithm, thereby propounding the utility of NAVSOP for indoor environments to enable future navigation applications in real-world civilian and military domains. The results obtained via the novel IDW approach give a reduced uncertainty in position error estimation of 0.68 m as compared to the traditional approaches of fingerprinting with KNN (1.13 m) and trilateration (2.3 m).
Citation
Soma Simritha Rao, Madhireddy Sumana, Achanta Dattatreya Sarma, Tunguturi Sridher, and Kuruva Lakshmanna, "Ml-Based Hybrid Approach for Improved Indoor Source Localization," Progress In Electromagnetics Research C, Vol. 158, 253-260, 2025.
doi:10.2528/PIERC25043004
References

1. Wang, Jingqi, Zhi Xiong, Yao Zhao, Yiming Ding, Yihan Liu, Huanjin Wang, and Luqi Yan, "Covariance matrix transformation method for absolute/relative measurements fusion of vision/IMU/GNSS integration in parafoil landing," IEEE Sensors Journal, Vol. 24, No. 10, 16673-16687, 2024.
doi:10.1109/jsen.2024.3386789

2. Raquet, John F., Mikel M. Miller, and Thao Q. Nguyen, "Issues and approaches for navigation using signals of opportunity," Proceedings of The 2007 National Technical Meeting of The Institute of Navigation, 1073-1080, San Diego, CA, Jan. 2007.

3. Mitilineos, Stelios, Dimitris M. Kyriazanos, Olga E. Segou, John N. Goufas, and Stelios Thomopoulos, "Indoor localisation with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/pier10062801

4. Yuan, Ying, Feng Yu, Yang Chen, and Niancheng Zhang, "A method to realize NAVSOP by utilizing GNSS authorized signals," Journal of Systems Engineering and Electronics, Vol. 32, No. 5, 1232-1245, 2021.

5. Leng, Mei, Wee Peng Tay, Chong Meng Samson See, Sirajudeen Gulam Razul, and Moe Z. Win, "Modified CRLB for cooperative geolocation of two devices using signals of opportunity," IEEE Transactions on Wireless Communications, Vol. 13, No. 7, 3636-3649, Jul. 2014.
doi:10.1109/twc.2014.2314096

6. Omer, Mugahid, Yachao Ran, and Gui Yun Tian, "Indoor localization systems for passive UHF RFID tag based on RSSI radio map database," Progress In Electromagnetics Research M, Vol. 77, 51-60, 2019.
doi:10.2528/pierm18082904

7. Zou, Han, Baoqi Huang, Xiaoxuan Lu, Hao Jiang, and Lihua Xie, "A robust indoor positioning system based on the procrustes analysis and weighted extreme learning machine," IEEE Transactions on Wireless Communications, Vol. 15, No. 2, 1252-1266, 2016.
doi:10.1109/twc.2015.2487963

8. Shoari, Arian and Alireza Seyedi, "Localization of an uncooperative target with binary observations," 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, Marrakech, Morocco, 2010.
doi:10.1109/spawc.2010.5670968

9. Cheng, Xu, Domenico Ciuonzo, Pierluigi Salvo Rossi, Xiaodong Wang, and Wei Wang, "Multi-bit & sequential decentralized detection of a noncooperative moving target through a generalized rao test," IEEE Transactions on Signal and Information Processing over Networks, Vol. 7, 740-753, 2021.
doi:10.1109/TSIPN.2021.3126930

10. Zhang, Guoxin, Wei Yi, Michail Matthaiou, and Pramod K. Varshney, "Direct target localization with low-bit quantization in wireless sensor networks," IEEE Transactions on Signal Processing, Vol. 72, 3059-3075, 2024.
doi:10.1109/tsp.2024.3411672

11. Santos, Rochelle Xenia M. and Sivanand Krishnan, "Augmentation of weighted path loss multilateration via machine learning," IEEE Sensors Journal, Vol. 24, No. 2, 2270-2277, 2024.
doi:10.1109/jsen.2023.3335920

12. Santos, R. X. M. and S. Krishnan, "Using machine learning to improve accuracy and robustness of indoor positioning under practical usage scenarios," 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), 978-983, Singapore, 2022.
doi:10.1109/icarcv57592.2022.10004281

13. Tabella, Gianluca, Domenico Ciuonzo, Nicola Paltrinieri, and Pierluigi Salvo Rossi, "Bayesian fault detection and localization through wireless sensor networks in industrial plants," IEEE Internet of Things Journal, Vol. 11, No. 8, 13231-13246, Apr. 2024.
doi:10.1109/jiot.2024.3359646

14. Santos, Rochelle Xenia Mendoza, Sivanand Krishnan, and Sangle Manisha Sudhakar, "Robust smartphone-based indoor positioning under practical usage environments," 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1-8, Beijing, China, 2022.
doi:10.1109/ipin54987.2022.9918141

15. Xiang, Lai, Ying Xu, Jianhui Cui, Yang Liu, Ruozhou Wang, and Guofeng Li, "GM (1, 1)-based Weighted K-nearest neighbor algorithm for indoor localization," Remote Sensing, Vol. 15, No. 15, 3706, 2023.

16. Wang, Pu, Zhihong Feng, Yan Tang, and Yuzhi Zhang, "A fingerprint database reconstruction method based on ordinary Kriging algorithm for indoor localization," 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), 224-227, Changsha, China, 2019.
doi:10.1109/icitbs.2019.00060

17. Zheng, Zhenqi, You Li, Zongbo Liao, Yizhou Xue, Jian Kuang, Yuan Zhuang, and Peng Zhang, "The necessity of modeling location uncertainty of fingerprints for ubiquitous positioning," IEEE Sensors Journal, Vol. 23, No. 16, 18413-18422, Aug. 2023.

18. Peng, Xuesheng, Ruizhi Chen, Kegen Yu, Feng Ye, and Weixing Xue, "An improved weighted K-nearest neighbor algorithm for indoor localization," Electronics, Vol. 9, No. 12, 2117, 2020.
doi:10.3390/electronics9122117

19. Adiyatma, Farid Yuli Martin, Dwi Joko Suroso, and Panarat Cherntanomwong, "Fingerprint database enhancement using spatial interpolation for IoT-based indoor localization," 2022 26th International Computer Science and Engineering Conference (ICSEC), 192-197, Sakon Nakhon, Thailand, 2022.
doi:10.1109/icsec56337.2022.10049367

20. Srinivas, V. Satya, A. D. Sarma, and Hema K. Achanta, "Modeling of ionospheric time delay using anisotropic IDW with jackknife technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 1, 513-519, 2016.
doi:10.1109/tgrs.2015.2461017

21. Prasad, Niranjan and A. D. Sarma, "Ionospheric time delay estimation using IDW grid model for GAGAN," Journal of Indian Geophysical Union, Vol. 8, No. 4, 319-327, Oct. 2004.

22. Kapoor, R., S. Ramasamy, A. Gardi, and R. Sabatini, "UAV navigation using signals of opportunity in urban environments: An overview of existing methods," 1st International Conference on Energy and Power (ICEP), Dec. 2016.

23. Subhan, Fazli, Halabi Hasbullah, and Khalid Ashraf, "Kalman filter-based hybrid indoor position estimation technique in bluetooth networks," International Journal of Navigation and Observation, Vol. 2013, No. 1, 570964, 2013.
doi:10.1155/2013/570964

24. Nessa, Ahasanun, Bhagawat Adhikari, Fatima Hussain, and Xavier N. Fernando, "A survey of machine learning for indoor positioning," IEEE Access, Vol. 8, 214945-214965, 2020.
doi:10.1109/access.2020.3039271

25. Zhu, Xiuyan and Yuan Feng, "RSSI-based algorithm for indoor localization," Communications and Network, Vol. 5, No. 02, 37-42, 2013.
doi:10.4236/cn.2013.52b007

26. Sridher, Tunguturi, Achanta Dattatreya Sarma, Perumalla Naveen Kumar, and Kuruva Lakshmanna, "Distributed RSS-based 2D source localization system in extended indoor environment," Progress In Electromagnetics Research C, Vol. 120, 159-177, 2022.
doi:10.2528/pierc22021103

27. Sridher, T., A. D. Sarma, P. N. Kumar, and K. Lakshmanna, "Results of indoor localization using the optimum pathloss model at 2.4 GHz," 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, Rome, Italy, 2020.
doi:10.23919/ursigass49373.2020.9232019

28. Achilleos, G. A., "The inverse distance weighted interpolation method and error propagation mechanism–creating a DEM from an analogue topographical map," Journal of Spatial Science, Vol. 56, No. 2, 283-304, 2011.

29. Rappaport, Theodore S., Wireless Communications: Principles and Practice, Prentice Hall Ptr, New Jersey, 1996.

30. Gansemer, Sebastian, Uwe Großmann, and Syuzanna Hakobyan, "RSSI-based euclidean distance algorithm for indoor positioning adapted for the use in dynamically changing WLAN environments and multi-level buildings," 2010 International Conference on Indoor Positioning and Indoor Navigation, 1-6, Zurich, Switzerland, 2010.
doi:10.1109/ipin.2010.5648247