Vol. 158
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-05
Single-Port Microwave Sensor Using Defected Ground Structure Complementary Split Ring Resonator for Solid Material Characterization
By
Progress In Electromagnetics Research C, Vol. 158, 139-149, 2025
Abstract
This paper proposes a single-port microwave sensor for solid material characterization, based on defected ground structures (DGSs) with complementary split-ring resonators (CSRRs). Fabricated on an RO5880 substrate, the sensor was analyzed through both simulation and experimental measurement. Electromagnetic simulation and optimization were conducted using CST Studio Suite within the 1.5-3.0 GHz frequency range. The sensor's performance was evaluated with three materials of known permittivity: RO5880, RO4350, and FR-4. Results show that the two proposed configurations, one with a DGS CSRR (Design A) and the other with an added slot on the DGS CSRR (Design B) yielding Q-factors of 332 and 357, respectively. The higher Q-factor in Design B indicates increased sensitivity across all tested materials compared to Design A. For example, Design B achieved the highest sensitivity of 4.71% for RO5880 material compared to Design A. Thus, the added slot enhanced field coupling, improving measurement sensitivity and confirming the sensor's suitability for microwave-based solid material characterization.
Citation
Rayan A. Ba Amer, Noor Azwan Shairi, Maizatul Alice Meor Said, Zahriladha Zakaria, Mohamad Harris Misran, Adib Othman, Syah Alam, and Sharul Kamal Abdul Rahim, "Single-Port Microwave Sensor Using Defected Ground Structure Complementary Split Ring Resonator for Solid Material Characterization," Progress In Electromagnetics Research C, Vol. 158, 139-149, 2025.
doi:10.2528/PIERC25052003
References

1. Khalil, Muhammad Amir, Wong Hin Yong, Tehseen Batool, Ahasanul Hoque, Lo Yew Chiong, Hui Hwang Goh, Tonni Agustiono Kurniawan, Mohamed S. Soliman, and Mohammad Tariqul Islam, "Highly sensitive split ring resonator-based sensor for quality monitoring of edible oils," Scientific Reports, Vol. 15, No. 1, 2283, 2025.
doi:10.1038/s41598-025-85800-x

2. Chen, Lin-Feng, Chong Kim Ong, C. P. Neo, Vasundara V. Varadan, and Vijay K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
doi:10.1002/pen.760310703

3. Waser, R., Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, John Wiley & Sons, 2012.
doi:10.59875/1719924623

4. Alhegazi, Ammar, Zahriladha Zakaria, Noor Azwan Shairi, Tole Sutikno, Rammah A. Alahnomi, and Ahmed Ismail Abu-Khadrah, "Analysis and investigation of a novel microwave sensor with high Q-factor for oil sensing," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 12, No. 3, 1407-1412, 2018.
doi:10.11591/ijeecs.v12.i3.pp1407-1412

5. Alhegazi, Ammar, Zahriladha Zakaria, Noor Azwan Shairi, Tole Sutikno, Rammah A. Alahnomi, and Ahmed Ismail Abu-Khadrah, "Analysis and investigation of a novel microwave sensor with high Q-factor for liquid characterization," TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 17, No. 2, 1065-1070, 2019.
doi:10.12928/telkomnika.v17i2.11901

6. Mayani, Mahdieh Gholami, Francisco Javier Herraiz-Martínez, Javier Matanza Domingo, and Romano Giannetti, "Resonator-based microwave metamaterial sensors for instrumentation: Survey, classification, and performance comparison," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-14, 2021.
doi:10.1109/tim.2020.3040484

7. Huang, Taotao, Haiwen Liu, Cheng Guo, Linping Feng, and Li Geng, "3-D printed mm-Wave filter using increased-height DGS resonator for spurious suppression," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 11, 4293-4297, 2022.
doi:10.1109/tcsii.2022.3187970

8. Rao, Yunbo, Huizhen Jenny Qian, Bingzheng Yang, Roberto Gómez-García, and Xun Luo, "Dual-band bandpass filter and filtering power divider with ultra-wide upper stopband using hybrid microstrip/DGS dual-resonance cells," IEEE Access, Vol. 8, 23624-23637, 2020.
doi:10.1109/access.2020.2970209

9. İmeci, Ş. Taha, Bilal Tuetuencue, Faruk Beslija, Lamija Herceg, and , "Microstrip filters based on open stubs and SIR for high frequency and ultra-wideband applications," Journal of Engineering Research, Vol. 10, No. 3A, 212-223, 2022.
doi:10.36909/jer.10711

10. Li, Meiling, Ting Yang, Xue-Xia Yang, Dan Zeng, and Zixuan Yi, "A defected ground structure for TE and TM coupling reduction of dual-polarized antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 9, 2648-2652, 2024.
doi:10.1109/lawp.2024.3403165

11. Madni, Abdullah and Wasif Tanveer Khan, "Design of a compact 4-element GNSS antenna array with high isolation using a defected ground structure (DGS) and a microwave absorber," IEEE Open Journal of Antennas and Propagation, Vol. 4, 779-791, 2023.
doi:10.1109/ojap.2023.3298773

12. Tütüncü, Bilal, Hamid Torpi, and Şehabettin Taha İmeci, "Directivity improvement of microstrip antenna by inverse refraction metamaterial," Journal of Engineering Research, Vol. 7, No. 4, 2019.
doi:10.37868/sei.v2i1.40

13. Yasin, Fatin Nadiah Mohd, Noor Azwan Shairi, Adib Othman, Huda A. Majid, Zahriladha Zakaria, Imran Mohd Ibrahim, and Mohd Haizal Jamaluddin, "High isolation of SPDT PIN diode switch using switchable dumbbell-shaped DGS in millimeter wave 28 GHz band," Bulletin of Electrical Engineering and Informatics, Vol. 12, No. 6, 3509-3516, 2023.
doi:10.11591/eei.v12i6.6071

14. Othman, A., H. A. Majid, N. A. Shairi, A. A. Zolkefli, N. Al-Fadhali, Z. Z. Abidin, I. M. Ibrahim, and Z. Zakaria, "Millimeter-wave SPDT Discrete switch design with reconfigurable circle loaded dumbbell DGS," 2022 International Workshop on Antenna Technology (iWAT), 49-52, Dublin, Ireland, 2022.
doi:10.1109/iwat54881.2022.9811052

15. Alngar, Omar Z., Adel Barakat, and Ramesh K. Pokharel, "High PAE CMOS power amplifier with 44.4% FBW using superimposed dual-band configuration and DGS inductors," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 12, 1423-1426, 2022.
doi:10.1109/lmwc.2022.3189347

16. Yi, Zhenxiang and Chuxi Wang, "Noninvasive glucose sensors using defective-ground-structure coplanar waveguide," IEEE Sensors Journal, Vol. 23, No. 1, 195-201, 2023.
doi:10.1109/jsen.2022.3221729

17. Mansour, Esraa, Ahmed Allam, and Adel B. Abdel-Rahman, "A novel approach to non-invasive blood glucose sensing based on a defected ground structure," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, Dusseldorf, Germany, 2021.
doi:10.23919/eucap51087.2021.9411425

18. Muñoz-Enano, Jonathan, Paris Vélez, Marta Gil, and Ferran Martín, "Frequency-variation sensors for permittivity measurements based on dumbbell-shaped defect ground structures (DB-DGS): Analytical method and sensitivity analysis," IEEE Sensors Journal, Vol. 22, No. 10, 9378-9386, 2022.
doi:10.1109/jsen.2022.3163470

19. Li, Cuiping, Haizhao Li, Litian Wang, Xingchen Fan, Yang Xiong, Lirong Qian, Dan Li, Lin Miao, Jingli Wang, Hongji Li, and Mingji Li, "Microwave microfluidic glucose sensor based on a single-port dumbbell defective ground structure," IEEE Sensors Journal, Vol. 24, No. 16, 25670-25679, 2024.
doi:10.1109/jsen.2024.3419112

20. Hosseinzadeh, Shahram and Mousa Yousefi, "A permittivity and conductivity sensor based on microstrip transmission line with defective ground for detection of urea in saline," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-11, 2024.
doi:10.1109/tim.2024.3385840

21. Gong, YuXiang, Guohua Liu, Shuren Jiang, Jianyuan Yu, and TianYu Qi, "A DGS-CPW microwave sensor loaded with SRR for solid material measurement," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-8, 2024.
doi:10.1109/tim.2024.3446651

22. Misran, Mohamad Harris, Maizatul Alice Meor Said, Mohd Azlishah Othman, Azahari Salleh, Shadia Suhaimi, and Mohd Zahid Idris, "High sensitivity double split ring resonator-defected ground structure (DSRR-DGS) based microwave sensors for material characterization," 2024 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 440-443, Langkawi, Kedah, Malaysia, 2024.
doi:10.1109/apace62360.2024.10877286

23. Choudhary, Ajay Kumar, Sujit Barman, Tamasi Moyra, Anjan Debnath, and Anirban Bhattacharjee, "Gain enhancement of dual-band microstrip-fed antenna with complementary split ring resonators and rectangular slots embedded in patch for wireless applications using metamaterial cell-based superstrate," 2021 2nd International Conference on Range Technology (ICORT), 1-6, Chandipur, Balasore, India, 2021.
doi:10.1109/icort52730.2021.9581727

24. Bahar, Amyrul Azuan Mohd, Zahriladha Zakaria, Azmi Awang Md Isa, Eliyana Ruslan, and Rammah A. Alahnomi, "A review of characterization techniques for material's properties measurement using microwave resonant sensor," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 7, No. 2, 1-6, 2015.
doi:10.1109/iccsce.2015.7482160

25. Tao, Shunzhen, Yang Gao, Bo Li, Jianrui Zhang, Min Qian, and Fuzhen Xuan, "Water-based SRR sensor with machine learning algorithms for simultaneous temperature and pressure detection," IEEE Sensors Journal, Vol. 25, No. 3, 5470-5477, 2025.
doi:10.1109/jsen.2024.3521422

26. Elsheakh, Dalia N., EL-Hawary Mohamed, and Angie R. Eldamak, "Blood glucose monitoring biosensor based on multiband split-ring resonator monopole antenna," Biosensors, Vol. 15, No. 4, 250, 2025.
doi:10.3390/bios15040250

27. Alrayes, Nadin and Mousa I. Hussein, "Metamaterial-based sensor design using split ring resonator and Hilbert fractal for biomedical application," Sensing and Bio-Sensing Research, Vol. 31, 100395, 2021.
doi:10.1016/j.sbsr.2020.100395

28. Rusni, Izyani Mat, Alyani Ismail, Adam Reda Hasan Alhawari, Mohd Nizar Hamidon, and Nor Azah Yusof, "An aligned-gap and centered-gap rectangular multiple split ring resonator for dielectric sensing applications," Sensors, Vol. 14, No. 7, 13134-13148, 2014.
doi:10.3390/s140713134

29. Mansour, Esraa, Mohamed I. Ahmed, Ahmed Allam, Ramesh K. Pokharel, and Adel B. Abdel-Rahman, "A microwave sensor based on double complementary split-ring resonator using hexagonal configuration for sensing diabetics glucose levels," 2023 17th European Conference on Antennas and Propagation (EuCAP), 1-5, Florence, Italy, 2023.
doi:10.23919/eucap57121.2023.10133248

30. Gan, Hong-Yi, Wen-Sheng Zhao, Qi Liu, Da-Wei Wang, Linxi Dong, Gaofeng Wang, and Wen-Yan Yin, "Differential microwave microfluidic sensor based on microstrip complementary split-ring resonator (MCSRR) structure," IEEE Sensors Journal, Vol. 20, No. 11, 5876-5884, 2020.
doi:10.1109/jsen.2020.2973196

31. Albishi, Ali M., Mohamed K. El Badawe, Vahid Nayyeri, and Omar M. Ramahi, "Enhancing the sensitivity of dielectric sensors with multiple coupled complementary split-ring resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 10, 4340-4347, 2020.
doi:10.1109/tmtt.2020.3002996

32. Alahnomi, Rammah Ali, Zahriladha Zakaria, Eliyana Ruslan, Siti Rosmaniza Ab Rashid, and Amyrul Azuan Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," IEEE Sensors Journal, Vol. 17, No. 9, 2766-2775, 2017.
doi:10.1109/jsen.2017.2682266

33. Al-Gburi, Ahmed Jamal Abdullah, Norhanani Abd Rahman, Zahriladha Zakaria, and Merih Palandoken, "Detection of semi-solid materials utilizing triple-rings CSRR microwave sensor," Sensors, Vol. 23, No. 6, 3058, 2023.
doi:10.3390/s23063058

34. Ye, Wei, Da-Wei Wang, Jing Wang, Gaofeng Wang, and Wen-Sheng Zhao, "An improved split-ring resonator-based sensor for microfluidic applications," Sensors, Vol. 22, No. 21, 8534, 2022.
doi:10.3390/s22218534

35. Ikhsan, Fatin H., Yee S. Khee, Samsul H. Dahlan, Fahmiruddin Esa, and Vahid Nayyeri, "Synthesis and characterization of polymer (PDMS-FE3O4) Magneto-dielectric material based on complementary double split ring resonator," Progress In Electromagnetics Research C, Vol. 141, 79-87, 2024.
doi:10.2528/pierc23091402

36. Samsuri, Wan Nurnabihah Wan Muhammed, Muhd Faris Sapuri, S. A. Enche Ab Rahim, Farah Adilah Mohd Kasran, Norliyana Yusof, and Zuhani Ismail Khan, "High Q double-ring complementary split ring resonator to detect ammoniacal nitrogen for water quality applications," 2023 IEEE Symposium on Wireless Technology & Applications (ISWTA), 174-178, Kuala Lumpur, Malaysia, Aug. 2023.
doi:10.1109/iswta58588.2023.10249763

37. Armghan, Ammar, Turki M. Alanazi, Ahsan Altaf, and Tanveerul Haq, "Characterization of dielectric substrates using dual band microwave sensor," IEEE Access, Vol. 9, 62779-62787, 2021.
doi:10.1109/access.2021.3075246

38. Kurniawati, Nazmia, Paris Vélez, Pau Casacuberta, Lijuan Su, Xavier Canalias, and Ferran Martín, "Microstrip line loaded with series gap and dumbbell defect-ground-structure (DB-DGS) resonator for highly sensitive sensing based on resonance/antiresonance: Application to humidity measurements," IEEE Sensors Letters, Vol. 9, No. 6, 1-4, 2025.
doi:10.1109/lsens.2025.3567134

39. Ruiz-Garcia, Luis, Loredana Lunadei, Pilar Barreiro, and Jose Ignacio Robla, "A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends," Sensors, Vol. 9, No. 6, 4728-4750, 2009.
doi:10.3390/s90604728

40. Zhang, Jiaqi, Guohua Liu, Shuren Jiang, Yuxiang Gong, and Rui Zhang, "A microwave sensor based on grounded coplanar waveguide for solid material measurement," IEEE Sensors Journal, Vol. 25, No. 3, 4192-4200, 2024.
doi:10.1109/jsen.2024.3516757

41. Jang, Se-Young and Jong-Ryul Yang, "Double split-ring resonator for dielectric constant measurement of solids and liquids," Journal of Electromagnetic Engineering and Science, Vol. 22, No. 2, 122-128, 2022.
doi:10.26866/jees.2022.2.r.68

42. Alam, Syah, Zahriladha Zakaria, Indra Surjati, Noor Azwan Shairi, Mudrik Alaydrus, and Teguh Firmansyah, "Integrated microwave sensor and antenna sensor based on dual T-shaped resonator structures for contact and noncontact characterization of solid material," IEEE Sensors Journal, Vol. 23, No. 12, 13010-13018, 2023.
doi:10.1109/jsen.2023.3273008

43. Buragohain, Akash, Abu Tahir Talat Mostako, and Gouree Shankar Das, "Low-cost CSRR based sensor for determination of dielectric constant of liquid samples," IEEE Sensors Journal, Vol. 21, No. 24, 27450-27457, 2021.
doi:10.1109/jsen.2021.3124329

44. Alsaif, Haitham, Md. Rashedul Islam, Ahasanul Hoque, Mohamed S. Soliman, Md. Shabiul Islam, and Mohammad Tariqul Islam, "Dual circular complementary split ring resonator based metamaterial sensor with high sensitivity and quality factor for textile material detection," APL Materials, Vol. 12, No. 3, 031136, 2024.
doi:10.1063/5.0196472