Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-02
Injection Damage Analysis of PHEMT Low-Noise Amplifier Circuit Under Electromagnetic Pulse
By
Progress In Electromagnetics Research C, Vol. 159, 132-142, 2025
Abstract
The low-noise amplifier(LNA) is the most vulnerable device in the front-door coupling path of the wireless communication link. When the electromagnetic pulse(EMP) is injected into the LNA circuit, it first generates the electromagnetic response with peripheral components, and then is transmitted further. This affects the pulse value transmitted to the internal semiconductor device and its degree of damage. The pseudomorphic high electron mobility transistor(pHEMT) type transistors are widely used in modern RF circuits because of their good stability and wide frequency characteristics. However, the frequency-selective characteristics of the front-end system exacerbate the electromagnetic coupling damage of the LNA circuit in some frequency bands. Therefore, in this paper, the vulnerable frequency points of the pHEMT LNA circuit under repetitive pulses are analyzed by injection experiment. It is found that both in-band and out-of-band lead to permanent damage to the LNA. For the more vulnerable 3 GHz frequency point, the electromagnetic response under injection withstand and absorption conditions was measured, determining that the gate external resistance offset follows a power-law relationship with the input power. Furthermore, the energy threshold was obtained, which assesses the energy that, after electromagnetic loss by an external 100 Ω resistor, is transmitted to the gate input and causes permanent damage to the LNA transistor. The breakdown damage mechanism of the gate-source of the LNA transistor is verified by failure analysis.
Citation
Shaqi Tian, Fan Wu, Ruiqi Su, Ying Li, and Yuan'an Liu, "Injection Damage Analysis of PHEMT Low-Noise Amplifier Circuit Under Electromagnetic Pulse," Progress In Electromagnetics Research C, Vol. 159, 132-142, 2025.
doi:10.2528/PIERC25052205
References

1. Li, Yonglong, Ming Hu, Mingxuan Liang, Shengxian Chen, Teng Zhou, and Xuelin Yuan, "Study on the effects of ultra-wideband electromagnetic pulses on unmanned aerial vehicles," IEEE Transactions on Electromagnetic Compatibility, Vol. 66, No. 4, 1192-1202, 2024.
doi:10.1109/temc.2024.3386551

2. Seifi, Zahra, Ayaz Ghorbani, and Abdolali Abdipour, "Analysis and experimental study of radiative microwave pulses effects on the nonlinear performance of a low-noise amplifier," IEEE Transactions on Plasma Science, Vol. 49, No. 3, 1105-1114, 2021.
doi:10.1109/tps.2021.3057613

3. Spandana, Saggurthi, Sk Hasane Ahammad, and K. Srinivasa Rao, "Design and performance analysis of low noise amplifiers: A review," 2024 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON), 587-592, Kolkata, India, 2024.
doi:10.1109/edkcon62339.2024.10870688

4. Zhang, Cunbo, Jiande Zhang, Honggang Wang, and Guangxing Du, "Burnout properties of microwave pulse injected on GaAs PHEMT," Microelectronics Reliability, Vol. 55, No. 3-4, 508-513, 2015.
doi:10.1016/j.microrel.2015.01.003

5. Yan, Tao, Yonghua Zhang, Ping Li, and Shuai Zhang, "Study of microwave damage effect on HEMT low noise amplifier under different drain voltage bias," Microelectronics Reliability, Vol. 82, 228-234, 2018.
doi:10.1016/j.microrel.2017.10.028

6. Liu, Yang, ChangChun Chai, QingYang Fan, ChunLei Shi, Xiaowen Xi, XinHai Yu, and YingTang Yang, "Ku band damage characteristics of GaAs pHEMT induced by a front-door coupling microwave pulse," Microelectronics Reliability, Vol. 66, 32-37, 2016.
doi:10.1016/j.microrel.2016.09.002

7. Min, Sun-Hong, Hoechun Jung, Ohjoon Kwon, Matlabjon Sattorov, Seontae Kim, Seung-Hyuk Park, Dongpyo Hong, Seonmyeong Kim, Chawon Park, Bong Hwan Hong, and others, "Analysis of electromagnetic pulse effects under high-power microwave sources," IEEE Access, Vol. 9, 136775-136791, 2021.
doi:10.1109/access.2021.3117395

8. Yi, Shipeng and Zhengwei Du, "Thermal burnout effect of a GaAs PHEMT LNA caused by repetitive microwave pulses," IEEE Transactions on Plasma Science, Vol. 47, No. 10, 4620-4627, 2019.
doi:10.1109/tps.2019.2937361

9. Liu, Yu-Qian, Chang-Chun Chai, Han Wu, Yu-Hang Zhang, Chun-Lei Shi, and Yin-Tang Yang, "Mechanism of AlGaAs/InGaAs pHEMT nonlinear response under high-power microwave radiation," IEEE Journal of the Electron Devices Society, Vol. 8, 731-737, 2020.
doi:10.1109/jeds.2020.3008816

10. Li, Fuxing, Changchun Chai, Han Wu, Lei Wang, Qishuai Liang, Qi An, and Yintang Yang, "Study on high power microwave nonlinear effects and degradation characteristics of C-band low noise amplifier," Microelectronics Reliability, Vol. 128, 114427, 2022.
doi:10.1016/j.microrel.2021.114427

11. Yu, Xinhai, Zhenyang Ma, Changchun Chai, Chunlei Shi, and Peng Wang, "Nonlinear and permanent degradation of GaAs-based low-noise amplifier under electromagnetic pulse injection," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 1, 101-107, 2020.
doi:10.1109/temc.2018.2888520

12. Zhao, Min, Ya-Zhou Chen, Hui-Juan Li, and Xing Zhou, "Non-linear and damage effect on low noise amplifier injected by high power microwave," 2023 IEEE 7th International Symposium on Electromagnetic Compatibility (ISEMC), 1-4, Hangzhou, China, 2023.
doi:10.1109/isemc58300.2023.10370243

13. Zhang, Mingwen, Chunguang Ma, Ruilong Song, and Yong Luo, "Vulnerability of L-band LNA to the out-of-band HPM," IEEE Transactions on Plasma Science, Vol. 52, No. 6, 2050-2058, 2024.
doi:10.1109/tps.2024.3439130

14. Tasca, D. M., D. C. Wunsch, and H. Domingos, "Device degradation by high amplitude currents and response characteristics of discrete resistors," IEEE Transactions on Nuclear Science, Vol. 22, No. 6, 2522-2527, 1975.
doi:10.1109/tns.1975.4328161

15. Li, Yong, Haiyan Xie, Hui Yan, Jianguo Wang, and Zhiqiang Yang, "A thermal failure model for MOSFETs under repetitive electromagnetic pulses," IEEE Access, Vol. 8, 228245-228254, 2020.
doi:10.1109/access.2020.3045621

16. Xi, Xiaowen, Changchun Chai, Xingrong Ren, Yintang Yang, Zhenyang Ma, and Jing Wang, "Influence of the external component on the damage of the bipolar transistor induced by the electromagnetic pulse," Journal of Semiconductors, Vol. 31, No. 7, 074009, 2010.
doi:10.1088/1674-4926/31/7/074009

17. Zhou, Liang, Shuo Zhang, Wen-Yan Yin, and Jun-Fa Mao, "Investigating a thermal breakdown model and experiments on a silicon-based low-noise amplifier under high-power microwave pulses," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 487-493, 2016.
doi:10.1109/temc.2016.2514441

18. Qorvo, I., "0.1 ~ 6 GHz ultra low-noise amplifier," QPL9547 Datasheet, No. Rev. D, 1–11, 2023. [Online]. Available: https://www.qorvo.com/products/d/da007268, 2023.
doi:10.54905/disssi/v26i119/ms31e2033