Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-31
Enhancement and Optimization of High-Power Ku-Band Metallic Waveguide Radar Array Antenna: Large Efficiency, Wide Band and Low Side Lobe Level
By
Progress In Electromagnetics Research C, Vol. 159, 111-123, 2025
Abstract
In this paper the design of a cavity-backed slot antenna array with wideband operation and low sidelobe levels is introduced. A High gain metallic antenna array is designed using rectangular waveguides in both the feeding network and cavity-back slots, where a 16×16 array antenna is built with 8×8 subarrays. The antenna is fabricated using direct laser sintering (DLS) and computer numerical control (CNC) milling technology on both sides of each layer to guarantee no field leakage between antenna layers. For the sake of achieving a wide bandwidth in such array, a 1-to-64-way corporate feeding network is used to distribute the power in the lower feeding layer to excite the coupling apertures beneath the subarrays. The excited power coefficients through the array aperture are tapered using quasi-Taylor synthesis, with an even phase so the modified uneven power waveguide-splitter is designed to taper the field amplitudes within the feeding network till reaching the radiating slots. The array achieved a 14% bandwidth, a gain of more than 31.25 dBi over 1.85 GHz, sidelobe levels higher than 23 dB, and cross-polarization levels better than -40 dB, according to measured data.
Citation
Ibrahim Samy Mohamed, and Mahmoud Abdalla, "Enhancement and Optimization of High-Power Ku-Band Metallic Waveguide Radar Array Antenna: Large Efficiency, Wide Band and Low Side Lobe Level," Progress In Electromagnetics Research C, Vol. 159, 111-123, 2025.
doi:10.2528/PIERC25052311
References

1. Lemberg, K. V., O. A. Nazarov, V. S. Panko, and Y. P. Salomatov, "High gain substrate integrated waveguide slot antenna array," 2015 International Siberian Conference on Control and Communications (SIBCON), 1-3, Omsk, Russia, 2015.
doi:10.1109/SIBCON.2015.7147337

2. Kim, Dong-Yeon, W. Chung, Changhyun Park, S. Lee, and Sangwook Nam, "Design of a 45˚-inclined SIW resonant series slot array antenna for Ka-band," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 318-321, 2011.
doi:10.1109/LAWP.2011.2141105

3. Patanvariya, Deven G. and Anirban Chatterjee, "High gain and low cross-polarized printed array of Baravelle's spiral antennas for Ku-band application," AEU --- International Journal of Electronics and Communications, Vol. 132, 153634, 2021.
doi:10.1016/j.aeue.2021.153634

4. James, J. R., P. S. Hall, and C. Wood, Microstrip Antenna: Theory and Design, Peter Peregrinus, London, 1986.

5. Cheng, Yu Jian, Yong Xin Guo, and Zhen Guo Liu, "W-band large-scale high-gain planar integrated antenna array," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3370-3373, 2014.
doi:10.1109/tap.2014.2310483

6. Nissanov, Uri and Ghanshyam Singh, "Beamforming D-band phased array microstrip antennas," Sensors International, Vol. 3, 100196, 2022.
doi:10.1016/j.sintl.2022.100196

7. Emara, Hesham Mahmoud, Sherif K. El Dyasti, Hussein Hamed Ghouz, M. F. Abo Sree, and S. Y. Abdel Fatah, "Compact high gain microstrip array antenna using DGS structure for 5G applications," Progress In Electromagnetics Research C, Vol. 130, 213-225, 2023.
doi:10.2528/pierc22122110

8. Wang, Shuo, Dan Zhang, Zhendong Ding, Huiwen Chen, and Shenxiang Yang, "Broadband proximity coupled millimeter-wave microstrip array antenna for automotive radar applications," Progress In Electromagnetics Research Letters, Vol. 107, 93-101, 2022.
doi:10.2528/pierl22090605

9. Shirkolaei, Morteza Mohammadi, "High efficiency X-band series-fed microstrip array antenna," Progress In Electromagnetics Research C, Vol. 105, 35-45, 2020.
doi:10.2528/pierc20061003

10. Chen, Zhuozhu, Shi-Gang Zhou, and Tan-Huat Chio, "A class of all metal cavity-backed slot array with direct metal laser sintering," IEEE Access, Vol. 6, 69650-69659, 2018.
doi:10.1109/access.2018.2880481

11. Zhang, Miao, Koji Toyosaki, Jiro Hirokawa, Makoto Ando, Toru Taniguchi, and Makoto Noda, "A 60-GHz band compact-range gigabit wireless access system using large array antennas," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3432-3440, 2015.
doi:10.1109/tap.2015.2434397

12. Arakawa, Haruka, Hisanori Irie, Takashi Tomura, and Jiro Hirokawa, "Suppression of E-plane sidelobes using a double slit layer in a corporate-feed waveguide slot array antenna consisting of 2 × 2-element radiating units," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3743-3751, 2019.
doi:10.1109/tap.2019.2902677

13. Ghorbani, Saeid, Seyed Ali Razavi, Mohammad Hossein Ostovarzadeh, and Ali Farahbakhsh, "Development of a center fed slot array antenna with very low side lobes using ridge gap waveguide (RGW) technology," AEU --- International Journal of Electronics and Communications, Vol. 125, 153385, 2020.
doi:10.1016/j.aeue.2020.153385

14. Alessandri, F., M. Mongiardo, and R. Sorrentino, "Computer-aided design of beam forming networks for modern satellite antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1117-1127, 1992.
doi:10.1109/22.141343

15. Poulton, G. T., T. S. Bird, S. G. Hay, and Y. K. Choi, "Rigorous design of an antenna for AUSSAT-B," International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's, 1900-1903, Dallas, TX, USA, 1990.
doi:10.1109/APS.1990.115506

16. Moradian, Mahdi, "Employing the dumbbell-shaped longitudinal slot antennas in the planar slotted antenna arrays," International Journal of Microwave and Wireless Technologies, Vol. 14, No. 7, 914-925, 2022.
doi:10.1017/s175907872100115x

17. Miura, Yohei, Jiro Hirokawa, Makoto Ando, Yuzo Shibuya, and Goro Yoshida, "Double-layer full-corporate-feed hollow-waveguide slot array antenna in the 60-GHz band," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 2844-2851, 2011.
doi:10.1109/tap.2011.2158784

18. Tomura, Takashi, Yohei Miura, Miao Zhang, Jiro Hirokawa, and Makoto Ando, "A 45˚ linearly polarized hollow-waveguide corporate-feed slot array antenna in the 60-GHz band," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3640-3646, 2012.
doi:10.1109/TAP.2012.2201094

19. Tomura, Takashi, Jiro Hirokawa, Takuichi Hirano, and Makoto Ando, "A 45˚ linearly polarized hollow-waveguide 16 × 16-slot array antenna covering 71-86 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5061-5067, 2014.
doi:10.1109/TAP.2014.2345567

20. Kim, Dongjin, Jiro Hirokawa, Makoto Ando, Jun Takeuchi, and Akihiko Hirata, "64 × 64-element and 32 × 32-element slot array antennas using double-layer hollow-waveguide corporate-feed in the 120 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1507-1512, 2014.
doi:10.1109/TAP.2013.2296318

21. Garcia-Marin, Eduardo, Jose Luis Masa-Campos, and Pablo Sanchez-Olivares, "Diffusion bonding manufacturing of high gain W-band antennas for 5G applications," IEEE Communications Magazine, Vol. 56, No. 7, 21-27, 2018.
doi:10.1109/mcom.2018.1700986

22. Le Sage, Gregory Peter, "3D printed waveguide slot array antennas," IEEE Access, Vol. 4, 1258-1265, 2016.
doi:10.1109/access.2016.2544278

23. Tak, Jinpil, Adnan Kantemur, Yashika Sharma, and Hao Xin, "A 3-D-printed W-band slotted waveguide array antenna optimized using machine learning," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 11, 2008-2012, 2018.
doi:10.1109/lawp.2018.2857807

24. Garcia-Marin, Eduardo, Jose-Luis Masa-Campos, Pablo Sanchez-Olivares, and Beatriz Guilarte-Bellod, "3D-printed frequency-scanned slot array in grating waveguide," AEU --- International Journal of Electronics and Communications, Vol. 138, 153866, 2021.
doi:10.1016/j.aeue.2021.153866

25. Jung, Kangjae, Hak-Yong Lee, Gi-Cho Kang, Seung-Hyun Han, and Byungje Lee, "Cavity-backed planar slot array antenna with a single waveguide-fed sub-array," IEEE Antennas and Propagation Society Symposium, Vol. 3, 3273-3276, Monterey, CA, USA, 2004.
doi:10.1109/APS.2004.1332078

26. Lee, Byungje, Kangjae Jung, and Sung-Hyun Yang, "High-efficiency planar slot-array antenna with a single waveguide-fed cavity-backed subarray," Microwave and Optical Technology Letters, Vol. 43, No. 3, 228-231, 2004.
doi:10.1002/mop.20426

27. Oh, S-.S., J.-W. Lee, M.-S. Song, and Y.-S. Kim, "Two-layer slotted-waveguide antenna array with broad reflection/gain bandwidth at millimetre-wave frequencies," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 5, 393-398, 2004.
doi:10.1049/ip-map:20040813

28. Hansen, Robert C., Phased Array Antennas, 2nd Ed., John Wiley & Sons, 2009.
doi:10.1002/0471224219

29. Jiang, Xun, Fangxiu Jia, Yang Cao, Pan Huang, Jiyan Yu, Xiaoming Wang, and Yongrong Shi, "Ka-band 8 × 8 low-sidelobe slot antenna array using a 1-to-64 high-efficiency network designed by new printed RGW technology," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1248-1252, 2019.
doi:10.1109/lawp.2019.2913955

30. Li, Teng and Zhi Ning Chen, "Wideband sidelobe-level reduced Ka-band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1356-1365, 2020.
doi:10.1109/tap.2019.2943330

31. Liu, Jinlin, Fei Yang, Kuikui Fan, and Cheng Jin, "Unequal power divider based on inverted microstrip gap waveguide and its application for low sidelobe slot array antenna at 39 GHz," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 12, 8415-8425, 2021.
doi:10.1109/tap.2021.3096981

32. Vosoogh, Abbas, Per-Simon Kildal, and Vessen Vassilev, "Wideband and high-gain corporate-fed gap waveguide slot array antenna with ETSI Class II radiation pattern in V-band," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1823-1831, 2017.
doi:10.1109/tap.2016.2634282

33. Castellá-Montoro, Adrian, Miguel Ferrando-Rocher, Jose Ignacio Herranz-Herruzo, and Alejandro Valero-Nogueira, "Low-sidelobe flat panel array fed by a 3D-printed half-mode gap waveguide amplitude-tapering network," IEEE Access, Vol. 12, 2607-2614, 2024.
doi:10.1109/access.2023.3347222

34. Li, Liang, Jianhong Chen, Lingwen Kong, Pengyu Zhang, Qihao Lv, Binchao Zhang, Buning Tian, and Cheng Jin, "W-band ridge gap waveguide slot array antenna with low sidelobe and high-gain characteristics," Microwave and Optical Technology Letters, Vol. 64, No. 3, 565-570, 2022.
doi:10.1002/mop.33135

35. Ran, Juqing, Cheng Jin, Pengyu Zhang, Weimin Wang, and Yongle Wu, "High-gain and low-loss dual-polarized antenna array with reduced sidelobe level based on gap waveguide at 28 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 5, 1022-1026, 2022.
doi:10.1109/lawp.2022.3155566

36. Pla-Herliczka, Damián, Jose I. Herranz-Herruzo, Miguel Ferrando-Rocher, and Alejandro Valero-Nogueira, "Taylor-weighting ridge gap waveguide feed network for low-profile fully metallic array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 9, 2703-2707, 2024.
doi:10.1109/lawp.2024.3404998

37. Huang, Guan-Long, Shi-Gang Zhou, Tan-Huat Chio, Hon-Tat Hui, and Tat-Soon Yeo, "A low profile and low sidelobe wideband slot antenna array feb by an amplitude-tapering waveguide feed-network," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 419-423, 2015.
doi:10.1109/tap.2014.2365238

38. Shi, Lei, Carlo Bencivenni, Rob Maaskant, Johan Wettergren, Johan Pragt, and Marianna Ivashina, "High-efficiency and wideband aperiodic array of uniformly excited slotted waveguide antennas designed through compressive sensing," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 2992-2999, 2019.
doi:10.1109/tap.2019.2891647

39. Kumar, Pramod, Ashutosh Kedar, and Anil Kumar Singh, "Design and development of low-cost low sidelobe level slotted waveguide antenna array in X-band," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4723-4731, 2015.
doi:10.1109/tap.2015.2475632

40. You, Yang, Yunlong Lu, Yi Wang, Wen-Wen Yang, Zhang-Cheng Hao, Qingchun You, and Jifu Huang, "High-performance E-band continuous transverse stub array antenna with a 45° linear polarizer," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2189-2193, 2019.
doi:10.1109/lawp.2019.2940127