Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-06
Analysis of a Novel Flux Switching Consequent Pole Pseudo-Direct-Drive Machine in Multi-Physics Field
By
Progress In Electromagnetics Research C, Vol. 159, 182-192, 2025
Abstract
Pseudo-direct-drive (PDD) machine is a new type of permanent magnet machine with high torque density and efficiency. PDD with consequent poles can reduce the influence of outer PM on electromagnetic torque, but it has the disadvantage of high eddy current loss which will limit the range of speed. By transferring PMs from high-speed rotor to low-speed rotor, the eddy current loss in PMs is reduced, and the high-speed rotor is more robust. In this paper, a flux-switching consequent pole PDD (CP-PDD) machine is built. After optimization through a multi-objective genetic algorithm, the superiority of the proposed machine to regular CP-PDD is demonstrated by comparing it through the finite element method. The output torque of the proposed machine is greatly affected by the direct drive torque. A prototype is built and tested to verify the proposed machine. Results show that the proposed machine is more suitable for high-speed operation due to the reduction of loss and robustness of the high-speed rotor. The working temperature of the proposed machine is analyzed, and there is almost no irreversible demagnetization.
Citation
Kunwei Hong, Zhangwu Huang, and Libing Jing, "Analysis of a Novel Flux Switching Consequent Pole Pseudo-Direct-Drive Machine in Multi-Physics Field," Progress In Electromagnetics Research C, Vol. 159, 182-192, 2025.
doi:10.2528/PIERC25052901
References

1. Zhu, Xiaofeng and Wei Hua, "Stator-slot/rotor-pole pair combinations of flux-reversal permanent magnet machine," IEEE Transactions on Industrial Electronics, Vol. 66, No. 9, 6799-6810, Sep. 2019.
doi:10.1109/tie.2018.2878113

2. Cheng, M., P. Han, and W. Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, Aug. 2017.

3. Fang, Li, Dawei Li, and Ronghai Qu, "Torque improvement of vernier permanent magnet machine with larger rotor pole pairs than stator teeth number," IEEE Transactions on Industrial Electronics, Vol. 70, No. 12, 12648-12659, Dec. 2023.
doi:10.1109/tie.2022.3232651

4. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Transactions on Magnetics, Vol. 37, No. 4, 2844-2846, Jul. 2001.
doi:10.1109/20.951324

5. Kashani, Seyed Ahmadreza Afsari, "Design and optimization of coaxial reluctance magnetic gear with different rotor topologies," IEEE Transactions on Industrial Electronics, Vol. 69, No. 1, 101-109, Jan. 2022.
doi:10.1109/tie.2021.3053886

6. Wang, Yawei, Mattia Filippini, Nicola Bianchi, and Piergiorgio Alotto, "A review on magnetic gears: Topologies, computational models, and design aspects," IEEE Transactions on Industry Applications, Vol. 55, No. 5, 4557-4566, Sep.-Oct. 2019.
doi:10.1109/tia.2019.2916765

7. Jing, Libing, Wei Liu, Weizhao Tang, and Ronghai Qu, "Design and optimization of coaxial magnetic gear with double-layer PMs and spoke structure for tidal power generation," IEEE/ASME Transactions on Mechatronics, Vol. 28, No. 6, 3263-3271, 2023.
doi:10.1109/tmech.2023.3261987

8. Atallah, Kais, Jan Rens, Smail Mezani, and David Howe, "A novel `pseudo' direct-drive brushless permanent magnet machine," IEEE Transactions on Magnetics, Vol. 44, No. 11, 4349-4352, Nov. 2008.
doi:10.1109/tmag.2008.2001509

9. Cooke, Glynn and Kais Atallah, "Pseudo direct drive electrical machines with alternative winding configurations," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-8, Nov. 2017.
doi:10.1109/tmag.2017.2703662

10. Gerber, Stiaan and Rong-Jie Wang, "Design and evaluation of a magnetically geared PM machine," IEEE Transactions on Magnetics, Vol. 51, No. 8, 1-10, Aug. 2015.
doi:10.1109/tmag.2015.2421474

11. Dragan, Radu Stefan, Richard E. Clark, Essam Khalaf Hussain, Kais Atallah, and Milijana Odavic, "Magnetically geared pseudo direct drive for safety critical applications," IEEE Transactions on Industry Applications, Vol. 55, No. 2, 1239-1249, Mar.-Apr. 2019.
doi:10.1109/tia.2018.2873511

12. Niguchi, Noboru and Katsuhiro Hirata, "Magnetic-geared motors with high transmission torque density," COMPEL, Vol. 34, No. 2, 428-438, 2015.
doi:10.1108/compel-07-2014-0182

13. Niguchi, N., K. Hirata, E. Morimoto, and Y. Ohno, "Magnetizing directions of the permanent magnets of the magnetic-geared motor," 2014 International Conference on Electrical Machines (ICEM), 1279-1285, Berlin, Germany, Sep. 2014.
doi:10.1109/ICELMACH.2014.6960347

14. Huang, Hailin, Dawei Li, Wubing Kong, and Ronghai Qu, "Torque performance of pseudo direct-drive machine with Halbach consequent pole," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), 3286-3293, Portland, OR, USA, 2018.
doi:10.1109/ECCE.2018.8558267

15. Gan, Quan, Youtong Fang, and Pierre-Daniel Pfister, "A novel concentrated-winding vernier pseudo-direct-drive permanent-magnet machine," IEEE Transactions on Magnetics, Vol. 58, No. 2, 1-5, Feb. 2022.
doi:10.1109/tmag.2021.3100058

16. Aiso, Kohei, Kan Akatsu, and Yasuaki Aoyama, "A novel flux-switching magnetic gear for high-speed motor drive system," IEEE Transactions on Industrial Electronics, Vol. 68, No. 6, 4727-4736, Jun. 2021.
doi:10.1109/tie.2020.2988230

17. Traxler-Samek, Georg, Richard Zickermann, and Alexander Schwery, "Cooling airflow, losses, and temperatures in large air-cooled synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 172-180, Jan. 2010.
doi:10.1109/tie.2009.2031191

18. Wang, Likun, Yuan Li, Baoquan Kou, Fabrizio Marignetti, and Aldo Boglietti, "Influence of ventilation modes on the 3D global heat transfer of PMSM based on polyhedral mesh," IEEE Transactions on Energy Conversion, Vol. 37, No. 2, 1455-1466, Jun. 2022.
doi:10.1109/tec.2021.3137672

19. Kim, Hwigon, Hyun-Sam Jung, and Seung-Ki Sul, "Stator winding temperature and magnet temperature estimation of IPMSM based on high-frequency voltage signal injection," IEEE Transactions on Industrial Electronics, Vol. 70, No. 3, 2296-2306, Mar. 2023.
doi:10.1109/tie.2022.3174285

20. Di Nardo, Mauro, Gianvito Gallicchio, Marco Palmieri, Alessandro Marfoli, Giovanni Lo Calzo, Michele Degano, Chris Gerada, and Francesco Cupertino, "High-speed synchronous reluctance machines: Materials selection and performance boundaries," IEEE Transactions on Transportation Electrification, Vol. 8, No. 1, 1228-1241, Mar. 2022.
doi:10.1109/tte.2021.3109452

21. Wang, Chen, Jianbin Han, Zhuoran Zhang, Yuntao Hua, and Huamin Gao, "Design and optimization analysis of coreless stator axial-flux permanent magnet in-wheel motor for unmanned ground vehicle," IEEE Transactions on Transportation Electrification, Vol. 8, No. 1, 1053-1062, Mar. 2022.
doi:10.1109/tte.2021.3093931

22. Li, Xianglin, Kwok Tong Chau, Ming Cheng, Byungtaek Kim, and Robert D. Lorenz, "Performance analysis of a flux-concentrating field-modulated permanent-magnet machine for direct-drive applications," IEEE Transactions on Magnetics, Vol. 51, No. 5, 1-11, May 2015.
doi:10.1109/tmag.2014.2374553

23. Fan, Deyang, Xiaoyong Zhu, Li Quan, Peng Han, Zixuan Xiang, and Jiqi Wu, "Driving cycle design optimization of less-rare-earth PM motor using dimension reduction method," IEEE Transactions on Energy Conversion, Vol. 38, No. 3, 1614-1625, Sep. 2023.
doi:10.1109/tec.2023.3248302

24. Cai, Shun, Hao Chen, Xin Yuan, Yun-Chong Wang, Jian-Xin Shen, and Christopher H. T. Lee, "Analysis of synergistic stator permanent magnet machine with the synergies of flux-switching and flux-reversal effects," IEEE Transactions on Industrial Electronics, Vol. 69, No. 12, 12237-12248, Dec. 2022.
doi:10.1109/tie.2021.3134063

25. Zhao, Yu, Xiang Ren, Xinggang Fan, Dawei Li, and Ronghai Qu, "A high power factor permanent magnet vernier machine with modular stator and yokeless rotor," IEEE Transactions on Industrial Electronics, Vol. 70, No. 7, 7141-7152, Jul. 2023.
doi:10.1109/tie.2022.3199863