Vol. 158
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-20
Imaging Radar Performance: A Comparative Analysis of Multistatic and Monostatic Configurations for Enhanced Detection
By
Progress In Electromagnetics Research C, Vol. 158, 269-276, 2025
Abstract
This paper presents a comparative study evaluating the influence of monostatic and multistatic microwave imaging (MWI) configurations on imaging performance. Localization accuracy and Signal-to-Noise Ratio (SNR) are evaluated as key performance metrics for both configurations. Numerical simulations are conducted using CST Studio Suite, considering various scenarios involving circular antenna arrays surrounding embedded metallic rebars of different sizes within concrete pillars of varying geometries. Image reconstruction is performed using the Delay-and-Sum Integration (DASI) algorithm, an enhanced version of the conventional Delay-and-Sum (DAS) technique. The simulation results show the performance of the proposed reconstruction technique in terms of localization accuracy.
Citation
Hanane Taourite, Sidi Mohammed Chouiti, and Lotfi Merad, "Imaging Radar Performance: A Comparative Analysis of Multistatic and Monostatic Configurations for Enhanced Detection," Progress In Electromagnetics Research C, Vol. 158, 269-276, 2025.
doi:10.2528/PIERC25060221
References

1. Lalitha, K. and J. Manjula, "Non-invasive microwave head imaging to detect tumors and to estimate their size and location," Physics in Medicine, Vol. 13, 100047, Jun. 2022.
doi:10.1016/j.phmed.2022.100047

2. Ismail, Dastan and Samah Mustafa, "Diagnosis of a brain stroke using wideband microwave scattering," Royal Society Open Science, Vol. 10, No. 3, Mar. 2023.
doi:10.1098/rsos.221560

3. Garvin, Joe, Feras Abushakra, Zachary Choffin, Bayley Shiver, Yu Gan, Lingyan Kong, and Nathan Jeong, "Microwave imaging for watermelon maturity determination," Current Research in Food Science, Vol. 6, 100412, 2023.
doi:10.1016/j.crfs.2022.100412

4. Suzuki, Katsuyoshi, Shingo Nakamura, and Shouhei Kidera, "Complex permittivity retrieval approach with radar enhanced contrast source inversion for microwave nondestructive road evaluation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 17, 476-488, 2024.
doi:10.1109/jstars.2023.3331257

5. Duan, Beichen, Erin R. Bobicki, and Sean V. Hum, "Application of microwave imaging in sensor-based ore sorting," Minerals Engineering, Vol. 202, 108303, Nov. 2023.
doi:10.1016/j.mineng.2023.108303

6. Doğu, Semih, "Investigation of detectabilities of the dielectric objects in a through-the-wall microwave imaging setup," 2023 31st Signal Processing and Communications Applications Conference (SIU), 1-4, Istanbul, Turkiye, Jul. 2023.
doi:10.1109/siu59756.2023.10223767

7. Sivasankari, S., P. Raja, and N. Saranya, "A ultra-wideband vivaldi antenna with lozenge shaped slots for biomedical applications," 2023 International Conference on System, Computation, Automation and Networking (ICSCAN), 1-5, PUDUCHERRY, India, 2023.
doi:10.1109/icscan58655.2023.10395348

8. Hammouch, Nirmine, Amine Rghioui, Hassan Ammor, Mohamed Oubrek, and Jaime Lloret, "A low-cost UWB microwave imaging system for early-stage breast cancer detection," Multimedia Tools and Applications, Vol. 84, No. 17, 17329-17360, Jul. 2025.
doi:10.1007/s11042-024-19761-0

9. Abou-Khousa, Mohamed A., Mohammed Saif Ur Rahman, and Xie Xingyu, "Dual-polarized microwave imaging probe," IEEE Sensors Journal, Vol. 19, No. 5, 1767-1776, Mar. 2019.
doi:10.1109/jsen.2018.2882695

10. Alibakhshikenari, Mohammad, Bal S. Virdee, Panchamkumar Shukla, Naser Ojaroudi Parchin, Leyre Azpilicueta, Chan Hwang See, Raed A. Abd-Alhameed, Francisco Falcone, Isabelle Huynen, Tayeb A. Denidni, and Ernesto Limiti, "Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection," IEEE Access, Vol. 8, 174667-174678, 2020.
doi:10.1109/access.2020.3025672

11. Kwon, Sollip and Seungjun Lee, "Recent advances in microwave imaging for breast cancer detection," International Journal of Biomedical Imaging, Vol. 2016, No. 1, 5054912, 2016.
doi:10.1155/2016/5054912

12. Fear, E. C., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 5, 2119-2128, May 2013.
doi:10.1109/tmtt.2013.2255884

13. Ambrosanio, Michele, Martina Teresa Bevacqua, Tommaso Isernia, and Vito Pascazio, "Performance analysis of tomographic methods against experimental contactless multistatic ground penetrating radar," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 1171-1183, 2021.
doi:10.1109/jstars.2020.3034996

14. Zhuravlev, Andrey, Vladimir Razevig, Sergey Ivashov, Alexander Bugaev, and Margarita Chizh, "Experimental comparison of multi-static and mono-static antenna arrays for subsurface radar imaging," 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), 1-4, Tel Aviv, Israel, Nov. 2015.
doi:10.1109/comcas.2015.7360380

15. Naghibi, Atefeh and Amir Reza Attari, "Near-field radar-based microwave imaging for breast cancer detection: A study on resolution and image quality," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1670-1680, Mar. 2021.
doi:10.1109/tap.2020.3016407

16. Masoodi, Mehdi, Gianluca Gennarelli, Francesco Soldovieri, and Ilaria Catapano, "Multiview multistatic vs. multimonostatic three-dimensional ground-penetrating radar imaging: A comparison," Remote Sensing, Vol. 16, No. 17, 3163, 2024.
doi:10.3390/rs16173163

17. Chouiti, Sidi Mohammed, Lotfi Merad, Sidi Mohammed Meriah, Xavier Raimundo, and Abdelmalik Taleb-Ahmed, "An efficient image reconstruction method for breast cancer detection using an ultra-wideband microwave imaging system," Electromagnetics, Vol. 36, No. 4, 225-235, May 2016.
doi:10.1080/02726343.2016.1158612

18. Byrne, Dallan, Martin O'Halloran, Martin Glavin, and Edward Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
doi:10.2528/pier10061001

19. Seladji, N., F. Z. Marouf, L. Merad, S. M. Meriah, F. T. Bendimerad, M. Bousahla, and N. Benahmed, "Antenne microruban miniature ultra large bande ULB pour imagerie micro-onde," Revue Méditerranéenne des Télécommunications, Vol. 3, No. 1, 21-25, 2013.

20. González-López, Giselle, Sebastián Blanch, Jordi Romeu, and Lluis Jofre, "Debye frequency-extended waveguide permittivity extraction for high complex permittivity materials: Concrete setting process characterization," IEEE Transactions on Instrumentation and Measurement, Vol. 69, No. 8, 5604-5613, Aug. 2020.
doi:10.1109/tim.2019.2957895

21. Li, Chuan, Yue Zhang, Lulu Wang, Weiping Zhang, Xi Yang, and Xiumei Yang, "Recognition of rebar in ground-penetrating radar data for the second lining of a tunnel," Applied Sciences, Vol. 13, No. 5, 3203, Jan. 2023.
doi:10.3390/app13053203