1. Zhang, X. Y., Q. J. Du, S. L. Ma, et al., "Development of hybrid excitation generator for automobiles," Automotive Engineering, Vol. 39, No. 7, 822-826, 2017.
doi:10.1186/s10033-019-0334-x Google Scholar
2. Dai, J., "Research on tangential structure permanent magnet synchronous motor and its hybrid excitation technology," Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2015.
doi:10.1007/978-981-96-2256-6_49
3. Geng, Huihui, Xueyi Zhang, Yufeng Zhang, Wenjing Hu, Yulong Lei, Xiaoming Xu, Aichuan Wang, Shanjian Wang, and Liwei Shi, "Development of brushless claw pole electrical excitation and combined permanent magnet hybrid excitation generator for vehicles," Energies, Vol. 13, No. 18, 4723, 2020.
doi:10.3390/en13184723 Google Scholar
4. Fathollahi-Fard, Amir Mohammad and Mostafa Hajiaghaei-Keshteli, "A stochastic multi-objective model for a closed-loop supply chain with environmental considerations," Applied Soft Computing, Vol. 69, 232-249, 2018.
doi:10.1016/j.asoc.2018.04.055 Google Scholar
5. Farahani, Ehsan Farmahini, Mohammad Amin Jalali Kondelaji, and Mojtaba Mirsalim, "An innovative hybrid-excited multi-tooth switched reluctance motor for torque enhancement," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 982-992, 2021.
doi:10.1109/tie.2020.2969073 Google Scholar
6. Tounsi, Souhir, "Constrained design and control of trapezoidal waves-forms hybrid excitation synchronous motor increasing energy accumulator lifetime," International Transactions on Electrical Energy Systems, Vol. 29, No. 12, e12127, 2019.
doi:10.1002/2050-7038.12127 Google Scholar
7. Ning, B., C. H. Zhao, and G. Liu, "Technical status and new progress of hybrid excitation motor," Motor and Control Applications, Vol. 44 , No. 5, 1-12, 2017.
doi:10.1049/iet-epa.2015.0262 Google Scholar
8. Quan, X. W., "Design analysis and optimization of dual-rotor hybrid excitation axial flux-switching permanent magnet motor," Xi'an University of Technology, Xi'an, China, 2020.
doi:10.30941/cestems.2018.00024
9. Li, W. Y., S. R. Huang, and Q. Zhang, "Multi-domain simulation analysis of hybrid excitation claw-pole belt starter generator for hybrid vehicles," Chinese Journal of Electrical Engineering, Vol. 30, No. 36, 7-15, 2010.
doi:10.2991/epee-16.2016.65 Google Scholar
10. Zhang, C., "Design and performance calculation of hybrid excitation synchronous generator," Nanchang University, Nanchang, China, 2019.
11. Dai, J., Z. Zhang, Y. Mu, et al., "Characterization of armature reactive magnetic field and inductance of rotor magnetic split hybrid excitation synchronous motor," Journal of Electro Technology, Vol. 30, No. 12, 276-283, 2015.
doi:10.1109/eml.2012.6325015 Google Scholar
12. Zhang, X. X., "Optimized design and research of rotor magnetic split hybrid excitation drive motor," Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2017.
13. Wang, C., Z. R. Zhang, and Y. Liu, "Optimization of rotor eddy current loss and heat dissipation in high torque density rotor magnetic split hybrid excitation motor," Chinese Journal of Electrical Engineering, Vol. 41, No. 21, 7476-7486, 2021.
doi:10.1002/2050-7038.12700 Google Scholar
14. Ali, Hassan, Erwan Sulaiman, Mahyuzie Jenal, Faisal Amin, Irfan Ali, et al., "Design improvement and comparison of hybrid excitation FSM using segmental rotor," 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA), 186-191, Penang, Malaysia, 2019.
doi:10.1109/CSPA.2019.8696034
15. Nedjar, B., S. Hlioui, M. Lécrivain, Y. Amara, L. Vido, and M. Gabsi, "Study of a new hybrid excitation synchronous machine," 2012 XXth International Conference on Electrical Machines, 2927-2932, Marseille, France, 2012.
doi:10.1109/icelmach.2012.6350303
16. Finken, Thomas and Kay Hameyer, "Study of hybrid excited synchronous alternators for automotive applications using coupled FE and circuit simulations," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1598-1601, 2008.
doi:10.1109/tmag.2007.916114 Google Scholar
17. Wardach, Marcin, Piotr Paplicki, and Ryszard Palka, "A hybrid excited machine with flux barriers and magnetic bridges," Energies, Vol. 11, No. 3, 676, 2018.
doi:10.3390/en11030676 Google Scholar
18. Park, J. M., S. I. Kim, J. P. Hong, and J. H. Lee, "Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology," IEEE Transactions on Magnetics, Vol. 42, No. 10, 3479-3481, 2006.
doi:10.1109/tmag.2006.879501 Google Scholar