Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-05
Magnetic Density Analysis and Performance Optimization of Hybrid Excitation Starter Generator
By
Progress In Electromagnetics Research C, Vol. 159, 169-181, 2025
Abstract
Hybrid excitation starter generator (HESG) has an increased number of magnetic potential sources, leading to issues such as complex magnetic circuits, numerous structural parameters, and low space utilization. These factors cause traditional analysis methods to have long cycles and low accuracy. In this paper, a new type of salient pole electromagnetic and permanent magnet composite pole HESG is proposed, and an analysis method combining hierarchical optimization and Taguchi method to analyze the influence of different structural parameters of composite pole rotor on the HESG performance is proposed. Response surface method was used to simulate the stator groove with multiple objectives, analyze the electromagnetic characteristics of HESG, complete the performance optimization, prototype, and conduct experiments. The results show that the amplitude of the air gap magnetic density base of HESG is increased by 7.4%; the distortion rate is reduced by 10.6%; the output voltage is increased to 127.68 V; the output performance and magnetization ability are significantly improved; and the overall performance of the HESG is improved.
Citation
Hui Zhu, Wenjing Hu, Wei Wang, Shiqiang Liu, Xia Zhang, Jiewen Li, and Xingxu Jin, "Magnetic Density Analysis and Performance Optimization of Hybrid Excitation Starter Generator," Progress In Electromagnetics Research C, Vol. 159, 169-181, 2025.
doi:10.2528/PIERC25060604
References

1. Zhang, X. Y., Q. J. Du, S. L. Ma, et al., "Development of hybrid excitation generator for automobiles," Automotive Engineering, Vol. 39, No. 7, 822-826, 2017.
doi:10.1186/s10033-019-0334-x

2. Dai, J., "Research on tangential structure permanent magnet synchronous motor and its hybrid excitation technology," Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2015.
doi:10.1007/978-981-96-2256-6_49

3. Geng, Huihui, Xueyi Zhang, Yufeng Zhang, Wenjing Hu, Yulong Lei, Xiaoming Xu, Aichuan Wang, Shanjian Wang, and Liwei Shi, "Development of brushless claw pole electrical excitation and combined permanent magnet hybrid excitation generator for vehicles," Energies, Vol. 13, No. 18, 4723, 2020.
doi:10.3390/en13184723

4. Fathollahi-Fard, Amir Mohammad and Mostafa Hajiaghaei-Keshteli, "A stochastic multi-objective model for a closed-loop supply chain with environmental considerations," Applied Soft Computing, Vol. 69, 232-249, 2018.
doi:10.1016/j.asoc.2018.04.055

5. Farahani, Ehsan Farmahini, Mohammad Amin Jalali Kondelaji, and Mojtaba Mirsalim, "An innovative hybrid-excited multi-tooth switched reluctance motor for torque enhancement," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 982-992, 2021.
doi:10.1109/tie.2020.2969073

6. Tounsi, Souhir, "Constrained design and control of trapezoidal waves-forms hybrid excitation synchronous motor increasing energy accumulator lifetime," International Transactions on Electrical Energy Systems, Vol. 29, No. 12, e12127, 2019.
doi:10.1002/2050-7038.12127

7. Ning, B., C. H. Zhao, and G. Liu, "Technical status and new progress of hybrid excitation motor," Motor and Control Applications, Vol. 44 , No. 5, 1-12, 2017.
doi:10.1049/iet-epa.2015.0262

8. Quan, X. W., "Design analysis and optimization of dual-rotor hybrid excitation axial flux-switching permanent magnet motor," Xi'an University of Technology, Xi'an, China, 2020.
doi:10.30941/cestems.2018.00024

9. Li, W. Y., S. R. Huang, and Q. Zhang, "Multi-domain simulation analysis of hybrid excitation claw-pole belt starter generator for hybrid vehicles," Chinese Journal of Electrical Engineering, Vol. 30, No. 36, 7-15, 2010.
doi:10.2991/epee-16.2016.65

10. Zhang, C., "Design and performance calculation of hybrid excitation synchronous generator," Nanchang University, Nanchang, China, 2019.

11. Dai, J., Z. Zhang, Y. Mu, et al., "Characterization of armature reactive magnetic field and inductance of rotor magnetic split hybrid excitation synchronous motor," Journal of Electro Technology, Vol. 30, No. 12, 276-283, 2015.
doi:10.1109/eml.2012.6325015

12. Zhang, X. X., "Optimized design and research of rotor magnetic split hybrid excitation drive motor," Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2017.

13. Wang, C., Z. R. Zhang, and Y. Liu, "Optimization of rotor eddy current loss and heat dissipation in high torque density rotor magnetic split hybrid excitation motor," Chinese Journal of Electrical Engineering, Vol. 41, No. 21, 7476-7486, 2021.
doi:10.1002/2050-7038.12700

14. Ali, Hassan, Erwan Sulaiman, Mahyuzie Jenal, Faisal Amin, Irfan Ali, et al., "Design improvement and comparison of hybrid excitation FSM using segmental rotor," 2019 IEEE 15th International Colloquium on Signal Processing & Its Applications (CSPA), 186-191, Penang, Malaysia, 2019.
doi:10.1109/CSPA.2019.8696034

15. Nedjar, B., S. Hlioui, M. Lécrivain, Y. Amara, L. Vido, and M. Gabsi, "Study of a new hybrid excitation synchronous machine," 2012 XXth International Conference on Electrical Machines, 2927-2932, Marseille, France, 2012.
doi:10.1109/icelmach.2012.6350303

16. Finken, Thomas and Kay Hameyer, "Study of hybrid excited synchronous alternators for automotive applications using coupled FE and circuit simulations," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1598-1601, 2008.
doi:10.1109/tmag.2007.916114

17. Wardach, Marcin, Piotr Paplicki, and Ryszard Palka, "A hybrid excited machine with flux barriers and magnetic bridges," Energies, Vol. 11, No. 3, 676, 2018.
doi:10.3390/en11030676

18. Park, J. M., S. I. Kim, J. P. Hong, and J. H. Lee, "Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology," IEEE Transactions on Magnetics, Vol. 42, No. 10, 3479-3481, 2006.
doi:10.1109/tmag.2006.879501