Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-03
A Class of Asymmetric Microstrip Hybrid Couplers with Enhanced Bandwidth and Isolation Using Multi Section Phase Shifters for Modern Microwave Systems
By
Progress In Electromagnetics Research C, Vol. 159, 143-153, 2025
Abstract
This paper presents a class of wideband hybrid couplers with enhanced isolation, based on an N-section phase shift filter network integrated into an unequal-split, multi-section branch-line hybrid architecture. The key innovation lies in the incorporation of the N-section phase shift network, which significantly enhances the fractional bandwidth with each increase in section and isolation performance compared to conventional designs. A detailed design methodology applicable for any N is developed and validated through the fabrication and testing of two microstrip prototypes for N = 3 and N = 4 at a center frequency of 1 GHz. Both simulated and measured results confirm consistent tight coupling, insertion loss better than 6 dB, and isolation exceeding 15 dB across all prototypes. Furthermore, N = 3 and N = 4 hybrids shows peak isolation of 87.4 dB, 96.8 dB in simulation and 66.5 dB, 72.7 dB in measurement respectively, at the center frequency of 1 GHz. Notably, the designs demonstrate a progressive improvement in the fractional bandwidth, achieving 73.68% and 91.89% for N = 3 and N = 4, respectively. This scalable and frequency-flexible design approach makes the proposed class of hybrid couplers highly suitable for modern microwave systems such as vector network analyzer (VNA) test set, applications in radar, communication receivers, and phased array antennas.
Citation
Shubham Tirmanwar, and Debapratim Ghosh, "A Class of Asymmetric Microstrip Hybrid Couplers with Enhanced Bandwidth and Isolation Using Multi Section Phase Shifters for Modern Microwave Systems," Progress In Electromagnetics Research C, Vol. 159, 143-153, 2025.
doi:10.2528/PIERC25061206
References

1. Santiko, Arief Budi, Yussi Perdana Saputera, and Yuyu Wahyu, "Design and implementation of three branch line coupler at 3.0 GHz frequency for S-band radar system," 2016 22nd Asia-Pacific Conference on Communications (APCC), 315-318, Yogyakarta, Indonesia, 2016.
doi:10.1109/APCC.2016.7581487

2. Hu, Gongda, Gang Wang, Nan Yang, and Qingfu Zhang, "Multiobjective optimization design of microstrip directional coupler with generalized coupling slots," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 1, 252-261, 2024.
doi:10.1109/tmtt.2023.3289071

3. Pan, Yu Fei, Ye Yang, Wing Shing Chan, Shao Yong Zheng, and Wenli Shang, "A simple and universal phase control method for designing directional couplers with adjustable phase difference slope and high linearity," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 9, 3882-3895, 2023.
doi:10.1109/tmtt.2023.3248149

4. Li, Shifeng, Lijun Ma, Leiyang Wang, Bang Wu, Yuyang Cheng, Xiao Lei, Feng Liu, and Gary J. Cheng, "An ultrawideband GaAs MMIC microstrip directional coupler with high directivity and very flat coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 4, 2271-2279, 2022.
doi:10.1109/tmtt.2022.3146028

5. Ali, Mohamed Mamdouh M., Mohamed S.. El-Gendy, Muath Al-Hasan, Ismail Ben Mabrouk, Abdelrazik Sebak, and Tayeb A. Denidni, "A systematic design of a compact wideband hybrid directional coupler based on printed RGW technology," IEEE Access, Vol. 9, 56765-56772, 2021.
doi:10.1109/access.2021.3071758

6. Wang, Zheng-Bin, Xin Wei, Han-Ping Fang, Hua-Mei Zhang, and Ye-Rong Zhang, "A compact and broadband directional coupler for high-power radio frequency applications," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 2, 164-166, 2020.
doi:10.1109/lmwc.2020.2964672

7. Zhu, He and Amin M. Abbosh, "A compact tunable directional coupler with continuously tuned differential phase," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 1, 19-21, 2018.
doi:10.1109/lmwc.2017.2779819

8. Zheng, Yana, Yongle Wu, Weimin Wang, and Leidan Pan, "Uniplanar compact 180° hybrid coupler with fast and accurate wide power-division ratio switching ranges and enhanced bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 12, 5470-5481, 2023.
doi:10.1109/tmtt.2023.3280062

9. Huang, Feng, Lei Zhu, and Hao Zhang, "Balanced-to-single-ended filtering 180° hybrids with arbitrary power-division ratio," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 5, 2082-2090, 2023.
doi:10.1109/tmtt.2022.3223956

10. Zhu, He, Ting Zhang, and Y. Jay Guo, "Wideband hybrid couplers with unequal power division/arbitrary output phases and applications to miniaturized Nolen matrices," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 6, 3040-3053, 2022.
doi:10.1109/tmtt.2022.3164673

11. Chu, Huy Nam, Hua-Chien Liao, Gao-Yi Li, and Tzyh-Ghuang Ma, "Novel phase reconfigurable synthesized transmission line and its application to reconfigurable hybrid coupler," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 337-340, Nuremberg, Germany, 2017.
doi:10.23919/EuMIC.2017.8230727

12. Deng, Tianhao, King Yuk Chan, Yunhao Fu, and Rodica Ramer, "An analytical design method for a wideband differential waveguide directional coupler with de-embedding analysis," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-9, 2024.
doi:10.1109/tim.2024.3398132

13. Pan, Leidan, Yongle Wu, Weimin Wang, Yana Zheng, and Yuanan Liu, "A symmetrical broadband tight-coupled directional coupler with high directivity using three-folded-coupled lines," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 69, No. 9, 3744-3748, 2022.
doi:10.1109/tcsii.2022.3169160

14. Buesa-Zubiria, Ana and Jaime Esteban, "Design of broadband doubly asymmetrical branch-line directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 4, 1439-1451, 2020.
doi:10.1109/tmtt.2019.2953904

15. Nasr, Mohamed A. and Ahmed A. Kishk, "Analysis and design of broadband ridge-gap-waveguide tight and loose hybrid couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 8, 3368-3378, 2020.
doi:10.1109/tmtt.2020.3002167

16. Harini, K., T. R. Ganesh Babu, R. Praveena, G. Sudha, K. Gokul Kannan, and J. Gnanasoundharam, "Design of compact folded SIW hybrid coupler for Ka band application," 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), 1693-1697, Kannur, India, 2022.
doi:10.1109/ICICICT54557.2022.9917689

17. Liu, Hongmei, Shaojun Fang, Zhongbao Wang, and Shiqiang Fu, "Analysis and implementation of a dual-band coupled-line trans-directional coupler," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 3, 485-490, 2020.
doi:10.1109/tcsii.2019.2918767

18. Zhang, Gang, Fei Jiao, Shicheng Liu, Lei Zhu, Shiyan Wang, Qiyun Zhang, and Jiquan Yang, "Compact single- and dual-band filtering 180° hybrid couplers on circular patch resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 9, 3675-3685, 2020.
doi:10.1109/tmtt.2020.3010249

19. Wu, Xiaoqing and Lin-Ping Shen, "A miniaturized microstrip branch-line hybrid coupler using two sections and coupled-lines," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1741-1742, Singapore, 2021.
doi:10.1109/APS/URSI47566.2021.9703777

20. Wu, Xiaoqing and Lin-Ping Shen, "Compact ultra-wideband microstrip 3 dB branch-line coupler using coupled-lines," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 1462-1463, Denver, CO, USA, 2022.
doi:10.1109/AP-S/USNC-URSI47032.2022.9886053

21. Madhuri, A. Nidhi, A. Bharathi, and M. Swetha, "X band miniaturized 90° hybrid coupler," 2022 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-5, Rourkela, India, 2022.
doi:10.1109/WAMS54719.2022.9847979

22. İmeci, Mehmet Yusuf, Bilal Tütüncü, and Şehabeddin Taha İmeci, "A 3-dB 90 degrees microstrip hybrid directional coupler at 2.27 GHz," AEU --- International Journal of Electronics and Communications, Vol. 163, 154606, 2023.
doi:10.1016/j.aeue.2023.154606

23. Nouri, Leila, Salah I. Yahya, and Abbas Rezaei, "Design and fabrication of a compact branch-line hybrid coupler with a balanced phase using a new microstrip structure for GSM applications," AEU --- International Journal of Electronics and Communications, Vol. 161, 154529, 2023.
doi:10.1016/j.aeue.2023.154529

24. Beigizadeh, Mohammad, Rasoul Dehghani, and Abdolreza Nabavi, "Analysis and design of a lumped-element hybrid coupler using limited quality factor of components," AEU --- International Journal of Electronics and Communications, Vol. 82, 312-320, 2017.
doi:10.1016/j.aeue.2017.09.001

25. Young, Leo, "Synchronous branch guide directional couplers for low and high power applications," IRE Transactions on Microwave Theory and Techniques, Vol. 10, No. 6, 459-475, 1962.
doi:10.1109/tmtt.1962.1125554

26. Levy, R. and L. F. Lind, "Synthesis of symmetrical branch-guide directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 16, No. 2, 80-89, 1968.
doi:10.1109/tmtt.1968.1126612

27. Saleh, A. A. M., "Planar electrically symmetric N-way hybrid power dividers/combiners," IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 6, 555-563, 1980.
doi:10.1109/tmtt.1980.1130118

28. Parisi, S. J., "180 degrees lumped element hybrid," IEEE MTT-S International Microwave Symposium Digest, 1243-1246, Long Beach, CA, USA, 1989.
doi:10.1109/MWSYM.1989.38951

29. Hamming, R., Numerical Methods for Scientists and Engineers, Courier Corporation, 2012.

30. Kawabe, K., H. Koyama, and K. Shirae, "Planar inductor," IEEE Transactions on Magnetics, Vol. 20, No. 5, 1804-1806, 1984.
doi:10.1109/tmag.1984.1063271

31. Ghosh, Debapratim and Girish Kumar, "A four branch microstrip coupler with improved bandwidth and isolation," 2015 Twenty First National Conference on Communications (NCC), 1-6, Mumbai, India, 2015.
doi:10.1109/NCC.2015.7084836

32. Frickey, D. A., "Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, 205-211, 1994.
doi:10.1109/22.275248

33. Ghosh, D. and G. Kumar, "Broadband, partially unilateral active testset for network analyser," Electronics Letters, Vol. 52, No. 14, 1266-1268, 2016.
doi:10.1049/el.2016.0495

34. Tirmanwar, Shubham and Debapratim Ghosh, "Single chip broadband testset for network analyzers," 2020 URSI Regional Conference on Radio Science ( URSI-RCRS), 1-4, Varanasi, India, 2020.
doi:10.23919/URSIRCRS49211.2020.9113514

35. Afroz, Sadia and Kwang-Jin Koh, "90° hybrid-coupler based phase-interpolation phase-shifter for phased-array applications at W-band and beyond," 2016 IEEE MTT-S International Microwave Symposium (IMS), 1-4, San Francisco, CA, USA, 2016.
doi:10.1109/MWSYM.2016.7540415

36. Ahmed, Fayyadh H., Rola Saad, and Salam K. Khamas, "Flexible phase-reconfigurable branch line coupler for millimeter-wave phased array antenna," 2024 18th European Conference on Antennas and Propagation (EuCAP), 1-5, Glasgow, United Kingdom, 2024.
doi:10.23919/EuCAP60739.2024.10501297