Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-17
Machine Learning Assisted Monopole Antenna Optimization Using EONNC and SFIS Algorithm for Wearable Applications
By
Progress In Electromagnetics Research C, Vol. 160, 225-234, 2025
Abstract
This paper examines the optimisation of antenna parameters for wire monopole, vertical trapezoidal monopole, and circular disc monopole antennas with the Enhanced Optimizable Neural Network Classifier (EONNC) and Sugeno Fuzzy Inference System (SFIS). This study includes both quantitative and conventional antenna design techniques, offering comprehensive insights into antenna optimisation tactics. An advanced antenna selection algorithm identifies the ideal antenna by a comprehensive examination of performance metrics with the EONNC, hence reinforcing the rigour of our research process. The geometric parameters of the antennas are delineated, with SFIS proficiently ascertaining the appropriate dimensions. The EONNC categorises antennas into three classifications, whereas the SFIS determines optimal parameters for estimating antenna size. Accuracy measures assess the EONNC performance, whereas the SFIS performance is measured using the Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). Our suggested technique demonstrates remarkable precision in parameter prediction and antenna classification, with a mean absolute percentage error (MAPE) of less than 4% and an accuracy exceeding 99.3%. The research examines the circular disc monopole antenna due to limitations in simulation duration for SAR measurements, resulting in SAR values of 0.978 W/kg for arm measurements and 0.985 W/kg for hand measurements. The proposed techniques are very relevant to actual antenna designs, especially for wearable applications.
Citation
Rajendran Ramasamy, Samidoss Chinnapparaj, Vellaichamy Rajavel, Venkatesh Pandi Ravichandran, Abbas Ali Farithkhan, and Amanulla Yasmin Jenifer, "Machine Learning Assisted Monopole Antenna Optimization Using EONNC and SFIS Algorithm for Wearable Applications," Progress In Electromagnetics Research C, Vol. 160, 225-234, 2025.
doi:10.2528/PIERC25061607
References

1. Yahya, Muhammad S., Socheatra Soeung, Sharul Kamal Abdul Rahim, Umar Musa, Saeed S. Ba Hashwan, and Md. Ashraful Haque, "Machine learning-optimized compact frequency reconfigurable antenna with RSSI enhancement for long-range applications," IEEE Access, Vol. 12, 10970-10987, 2024.

2. Rizwan, Shaik, Kanaparthi V. Phani Kumar, and Abdullah J. Alazemi, "A compact textile monopole antenna for monitoring the healing of bone fractures using un-supervised machine learning algorithm," IEEE Access, Vol. 11, 101195-101204, 2023.

3. Zheng, Xie, Fei Meng, Yubo Tian, and Xinyu Zhang, "Design of monopole antennas based on progressive Gaussian process," International Journal of Microwave and Wireless Technologies, Vol. 15, No. 2, 255-262, 2023.

4. Ramasamy, Rajendran and Maria Anto Bennet, "Optimizable KNN and ANFIS algorithms development for accurate antenna parameter estimation," Progress In Electromagnetics Research C, Vol. 142, 207-218, 2024.

5. Ramasamy, Rajendran and M. Anto Bennet, "Optimizable KNN and ANFIS algorithms development for accurate antenna parameter estimation," Progress In Electromagnetics Research C, Vol. 142, 207-218, 2024.

6. Ramasamy, Rajendran and Maria Anto Bennet, "An efficient antenna parameters estimation using machine learning algorithms," Progress In Electromagnetics Research C, Vol. 130, 169-181, 2023.

7. Sharma, Yashika, Hao Helen Zhang, and Hao Xin, "Machine learning techniques for optimizing design of double T-shaped monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5658-5663, 2020.

8. Sharma, Yashika, Xi Chen, Junqiang Wu, Qiang Zhou, Hao Helen Zhang, and Hao Xin, "Machine learning methods-based modeling and optimization of 3-D-printed dielectrics around monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 4997-5006, 2022.

9. Wu, Qi, Weiqi Chen, Chen Yu, Haiming Wang, and Wei Hong, "Machine-learning-assisted optimization for antenna geometry design," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 3, 2083-2095, 2024.

10. Shah, Arpan H., Kalyanbrata Ghosh, and Piyush N. Patel, "Modeling and optimization of CPW-fed E-textile antenna using machine learning algorithms," Progress In Electromagnetics Research C, Vol. 130, 31-42, 2023.

11. Pandi Ravichandran, Venkatesh and Narmadha Velayudham, "On the performance investigation of a low profile UWB antenna backed with conjointly connected sickle shaped AMC structure for on-/off body communications," Frequenz, Vol. 79, No. 7-8, 2025.

12. Nakmouche, Mohammed F., A. Allam, Diaa E. Fawzy, and D.-B. Lin, "Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.

13. Choo, Jaeyul, Thi Ha Anh Pho, and Yong-Hwa Kim, "Machine learning technique to improve an impedance matching characteristic of a bent monopole antenna," Applied Sciences, Vol. 11, No. 22, 10829, 2021.

14. Shi, Dan, Cheng Lian, Keyi Cui, Yazhou Chen, and Xiaoyong Liu, "An intelligent antenna synthesis method based on machine learning," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 4965-4976, 2022.

15. Ganesh, Tiru and Divya Chaturvedi, "Design of wearable monopole antenna sensor for breast tumor detection," 2024 IEEE Wireless Antenna and Microwave Symposium (WAMS), 1-4, Visakhapatnam, India, 2024.

16. Zhao, Minghui, Asad Riaz, Imran M. Saied, Zain Shami, and Tughrul Arslan, "Dual-planar monopole antenna-based remote sensing system for microwave medical applications," Sensors, Vol. 24, No. 2, 328, 2024.

17. Saad, Ayman Ayd R., Walaa M. Hassan, and Ahmed A. Ibrahim, "A monopole antenna with cotton fabric material for wearable applications," Scientific Reports, Vol. 13, No. 1, 7315, 2023.

18. Sam, Prasad Jones Christydass, U. Surendar, Unwana M. Ekpe, M. Saravanan, and P. Satheesh Kumar, "A low-profile compact EBG integrated circular monopole antenna for wearable medical application," Smart Antennas: Latest Trends in Design and Application, 301-314, Springer International Publishing, Cham, 2022.

19. Abdelghany, Mahmoud A., Mohamed I. Ahmed, Ahmed A. Ibrahim, Arpan Desai, and Mai F. Ahmed, "Textile antenna with dual bands and SAR measurements for wearable communication," Electronics, Vol. 13, No. 12, 2251, 2024.

20. Chatterjee, Debajyoti and Anjan Kumar Kundu, "Implementation of machine learning for the design of spiral shaped multiband monopole antenna for MICS/IEEE802.11a/IEEE802.11b applications," Journal of Electromagnetic Waves and Applications, Vol. 39, No. 3, 318-343, 2025.

21. Yahya, Muhammad S., Socheatra Soeung, Sharul K. Abdul Rahim, Tan Kim Geok, and Umar Musa, "Machine learning-optimized wearable antenna for LoRa localization," IEEE Access, Vol. 12, 139237-139252, 2024.

22. Hamdi, Abdelaziz and Ala Balti, "Experimental study on designing smart antenna sensor networks and modelling management energy consumption for intelligent systems of internet of medical things," Journal of Information and Telecommunication, Vol. 9, No. 3, 357-381, 2025.

23. Leonardi, Ornella, Mario Giuseppe Pavone, Gino Sorbello, Andrea Francesco Morabito, and Tommaso Isernia, "Compact single-layer circularly polarized antenna for short-range communication systems," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1843-1846, 2014.

24. Rajavel, V. and Dibyendu Ghoshal, "A compact triband antenna using artificial magnetic conductor for wireless body area network communicationsFront," Wireless Networks, Vol. 29, No. 6, 2773-2795, 2023.

25. Ramasamy, Rajendran and Maria Anto Bennet, "An efficient antenna parameters estimation using machine learning algorithms," Progress In Electromagnetics Research C, Vol. 130, 169-181, 2023.