Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-30
Exploitation of Scattering of VHF Electromagnetic Waves from Jet Engine Exhaust Plasma Formations to Improve Detection Low RCS Aircrafts
By
Progress In Electromagnetics Research C, Vol. 160, 169-174, 2025
Abstract
The feasibility of utilization of VHF radars, radiating at lower and just above the plasma frequency of the gas formation exhausts of jet engine aircrafts, is investigated as a means to propose anti-stealth detection method. In the first step, the scattering of electromagnetic waves by a plasma sphere is studied, and comparison with Physical Optics (P.O.) Radar Cross Section (RCS) computations is done. This shows the possibility of using P.O. to compute the RCS under the assumption of jet engine exhaust plume structured modelled as multilayer prolate spheroid. Also, in case of radiation frequencies just above the plasma resonance, under the condition of weak scattering - refractive index being close to unity - the Rayleigh-Gans approximation is used to compute the RCS. Furthermore, computations based on this model shows the possibility to enhance the RCS of aircrafts by combining the ``specular'' reflection of part of the exhaust with plasma resonance frequency being higher than the radar frequency and also the part of exhaust having plasma frequency just below the radar radiation frequency. The numerical results show promising mechanisms to compete to improve the detectability of aircrafts with RCS as low as 0,001 m2.
Citation
Thomas N. Chatziathanasiou, Athanasios Douklias, and Nikolaos Uzunoglu, "Exploitation of Scattering of VHF Electromagnetic Waves from Jet Engine Exhaust Plasma Formations to Improve Detection Low RCS Aircrafts," Progress In Electromagnetics Research C, Vol. 160, 169-174, 2025.
doi:10.2528/PIERC25061802
References

1. Arvind Dhananjayan, Countering Stealth Technology in Military Aviation, https://indiandefencereview.com/countering-stealth-technology-in-military-aviation/.

2. Chatziathanasiou, Thomas N. and Nikolaos Uzunoglu, "Theoretical analysis of detection of flying vehicles based on the passive radiometric detection of microwave-millimeter-terahertz wavelength electromagnetic emissions from exhaust plasma gases," Progress In Electromagnetics Research C, Vol. 154, 267-275, 2025.
doi:10.2528/PIERC25021602

3. Winther, M. and K. Rypdal, 1.A.3.a, 1.A.5.b Aviation, European Environment Agency, 2017.

4. Starik, A. M., "Gaseous and particulate emissions with jet engine exhaust and atmospheric pollution," Advances on Propulsion Technology for High-Speed Aircraft, Vol. 15, 1-22, 2008.

5. Technical order 00-105E-9, Revision 11, Chapter 8, Aerospace Emergency Rescue and Mishap Response Information, F-16 aircraft danger areas, Engine Thrusts for F100-PW-229, http://www.0x4d.net/files/AF1/to00-105e-9.htm, 2006.

6. He, Liming, Yunwei Zhang, Hao Zeng, and Bingbing Zhao, "Research progress of microwave plasma ignition and assisted combustion," Chinese Journal of Aeronautics, Vol. 36, No. 12, 53-76, 2023.
doi:10.1016/j.cja.2023.04.029

7. Abu-Shady, M., Hijaz Ahmad, Hammad Alotaibi, and Ahmed Refaie Ali, "Investigating the fractional wave function and the impact of topological defects with anisotropic plasma on the dissociation of bottomonium in the fractional non-relativistic quark model," AIP Advances, Vol. 14, No. 4, 045011, 2024.
doi:10.1063/5.0179489

8. Chen, Victor C., D. Tahmoush, and William J. Miceli, Radar Micro-Doppler Signatures: Processing and Applications, IET, 2014.
doi:10.1049/PBRA034E

9. Stix, Thomas H., Waves in Plasmas, Chapter 1, Springer Science & Business Media, New York, 1992.

10. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation, Elsevier, Jun. 2016.

11. Yang, Xiao-Jun, Abdulrahman Ali Alsolami, and Ahmed Refaie Ali, "An even entire function of order one is a special solution for a classical wave equation in one-dimensional space," Thermal Science, Vol. 27, No. 1B, 491-495, 2023.
doi:10.2298/tsci221111008y

12. Refaie Ali, Ahmed, Md. Nur Alam, and Mst. Wahida Parven, "Unveiling optical soliton solutions and bifurcation analysis in the space-time fractional Fokas-Lenells equation via SSE approach," Scientific Reports, Vol. 14, No. 1, 2000, 2024.
doi:10.1038/s41598-024-52308-9

13. Crispin, J. W. and K. M. Siegel, Methods of Radar Cross-Section Analysis, Chapter 4, Academic Press, New York, 1968.

14. Trott, Keith D., "Stationary phase derivation for RCS of an ellipsoid," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 240-243, 2007.
doi:10.1109/lawp.2007.891521

15. https://militaryembedded.com/radar-ew/signal-processing/radar-cross-section-the-measure-of-stealth (F-22 RCS = 0.0001m2).

16. https://www.linkedin.com/posts/taits_it-is-amazing-that-an-f35-has-a-smaller-radar-activity-7265068792848756736-NKVU (F-35 RCS = 0.005 m², F-117 RCS = 0.003 m²).

17. https://www.globalsecurity.org/military/world/stealth-aircraft-rcs.htm (F-35 RCS = 0.005 m², F-117 RCS =0.003 m², F-22 RCS = 0.0001 m²).

18. Jones, Douglas Samuel, The Theory of Electromagnetism, 532, Pergamon Press, Oxford, 1964.

19. Jahnke, Eugene and Fritz Emde, Tables of Functions, Chapter VIII, Dover Pub., New York, 1945.

20. Roy, Amit Kaniyattu and V. S. Karthik, "A critical review of composite materials and stealth technology in modern aerospace engineering," Int. Jour. of Scientific and Research Publications, Vol. 14, No. 3, 185-193, Mar. 2024.
doi:10.29322/IJSRP.14.03.2024.p14720