Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-08
Multi-Mechanism Fusion Based 1D U-Net Models for Antenna Forward and Inverse Design
By
Progress In Electromagnetics Research C, Vol. 159, 218-226, 2025
Abstract
This study investigates the relation between the physical parameters and the scattering parameter (S11) curves of antennas, and proposes two deep-neural-network-based frameworks respectively for antenna forward and inverse designs, improving the design efficiency compared to the conventional electromagnetic (EM) simulation approaches. In this study, a one-dimensional (1D) U-Net is utilized as the backbone of the two models and is enhanced with multiple mechanisms - the diffusion mechanism, channel attention, and spatial attention. Therefore, the models more effectively capture the sequential features of data. In the forward design, the model quickly predicts the S11 curves from given physical parameters with an accuracy improvement of at least 63% RMSE and 70% MAE compared to the improved one-dimensional convolutional neural network (1D-MCNN) and deep multi-layer perceptron (DMLP), thus realizing the surrogate model of conventional methods to some extent. In the inverse design, another model directly infers the physical parameters corresponding to the target S11 curves with an accuracy improvement of at least 21% RMSE and 38% MAE compared to the baseline models (1D U-Net and MLP), thereby eliminating the iterative process of traditional methods and accelerating the antenna design. The experimental results demonstrate the significant advantages of the proposed deep neural network frameworks in terms of accuracy and efficiency for both forward and inverse designs of antennas, offering a powerful alternative to conventional electromagnetic simulation-based approaches.
Citation
Ximin Yang, Jingchang Nan, and Minghuan Wang, "Multi-Mechanism Fusion Based 1D U-Net Models for Antenna Forward and Inverse Design," Progress In Electromagnetics Research C, Vol. 159, 218-226, 2025.
doi:10.2528/PIERC25061902
References

1. Andriulli, Francesco, Pai-Yen Chen, Danilo Erricolo, and Jian-Ming Jin, "Guest editorial machine learning in antenna design, modeling, and measurements," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 4948-4952, 2022.
doi:10.1109/tap.2022.3189963

2. Zhu, Zhiwei, Yubo Tian, and Jinlong Sun, "Antenna modeling based on image-CNN-LSTM," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 9, 2738-2742, 2024.
doi:10.1109/lawp.2024.3405996

3. Pantanowitz, Liron, Thomas Pearce, Ibrahim Abukhiran, Matthew Hanna, Sarah Wheeler, T. Rinda Soong, Ahmad P. Tafti, Joshua Pantanowitz, Ming Y. Lu, Faisal Mahmood, et al., "Nongenerative artificial intelligence in medicine: Advancements and applications in supervised and unsupervised machine learning," Modern Pathology, Vol. 38, No. 3, 100680, 2025.
doi:10.1016/j.modpat.2024.100680

4. Kuznietsov, Anton, Balint Gyevnar, Cheng Wang, Steven Peters, and Stefano V. Albrecht, "Explainable AI for safe and trustworthy autonomous driving: A systematic review," IEEE Transactions on Intelligent Transportation Systems, Vol. 25, No. 12, 19342-19364, 2024.
doi:10.1109/tits.2024.3474469

5. Xiong, Guangyu, Petri Helo, Steve Ekström, and Zhen Shen, "A service-oriented autonomous crane system," IEEE Transactions on Computational Social Systems, Vol. 11, No. 6, 8030-8045, 2024.
doi:10.1109/tcss.2024.3404395

6. Koziel, Slawomir, Nurullah Çalık, Peyman Mahouti, and Mehmet A. Belen, "Accurate modeling of antenna structures by means of domain confinement and pyramidal deep neural networks," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2174-2188, 2022.
doi:10.1109/tap.2021.3111299

7. Koziel, Slawomir, Nurullah Çalık, Peyman Mahouti, and Mehmet A. Belen, "Low-cost and highly accurate behavioral modeling of antenna structures by means of knowledge-based domain-constrained deep learning surrogates," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 105-118, 2023.
doi:10.1109/tap.2022.3216064

8. Wei, Zhaohui, Zhao Zhou, Peng Wang, Jian Ren, Yingzeng Yin, Gert Frølund Pedersen, and Ming Shen, "Fast and automatic parametric model construction of antenna structures using CNN-LSTM networks," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 1319-1328, 2024.
doi:10.1109/TAP.2023.3346050

9. Su, Yue, Yifan Yin, Hongtai Chen, Shunli Li, Hongxin Zhao, Zhiguo Su, and Xiaoxing Yin, "Time-domain scattering parameters-based neural network inverse model for antenna designs," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 7, 1976-1980, 2024.
doi:10.1109/lawp.2024.3375303

10. Nan, J., Y. Du, M. Wang, and M. Gao, "Deep learning architecture and neural network optimization of ultra-wideband antenna modeling," Laser & Optoelectronics Progress, Vol. 59, No. 13, 1323001, 2022.

11. Nan, J., W. Sun, Y. Du, and M. Wang, "One-dimensional convolutional neural network modeling method for ultra-wideband antenna," Journal of Electronic Measurement and Instrument, Vol. 37, No. 2, 204-210, 2023.

12. Peng, Fengling and Xing Chen, "A low-cost optimization method for 2D antennas using a disassemblable convolutional neural network," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 9, 7057-7067, 2024.
doi:10.1109/TAP.2024.3437750

13. Huang, H., X.-S. Yang, and L. Yuan, "Antenna shape neural network modeling based on computer vision," National Conference on Microwave and Millimeter Wave (NCMMW'21), 691-693, Nanjing, China, May 2021.

14. Ninković, Darko, Shaik Basheeruddin Shah, Ahmed Altunaiji, Nazar Ali, and Dragan Olćan, "Comparison of ensembles of deep neural networks and mixture of experts for antenna modeling," IEEE Antennas and Wireless Propagation Letters, 1-5, 2025.
doi:10.1109/lawp.2025.3574176

15. Liu, Peiran, Dawei Liu, Yaoyao Li, Shuaipeng Ye, and Donglin Su, "Attention-based resnet for radiation pattern prediction of phased array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 12, 4453-4457, 2024.
doi:10.1109/lawp.2024.3451142

16. Jin, Jie, Qian Su, Yan Xu, Zhengrui He, and Yu Lu, "Efficient radiation pattern prediction of array antennas based on complex-valued graph neural networks," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 12, 2467-2471, 2022.
doi:10.1109/lawp.2022.3197441

17. Karahan, Emir Ali, Aggraj Gupta, Uday K. Khankhoje, and Kaushik Sengupta, "Deep learning based modeling and inverse design for arbitrary planar antenna structures at RF and millimeter-wave," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 499-500, Denver, CO, USA, Jul. 2022.
doi:10.1109/AP-S/USNC-URSI47032.2022.9887077

18. Gosal, G., D. A. McNamara, and M. C. E. Yagoub, "The use of inverse neural networks in transmitarray antenna design," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1272-1273, Memphis, TN, USA, 2014.
doi:10.1109/APS.2014.6904963

19. Liu, Jin-Pin, Bing-Zhong Wang, Chuan-Sheng Chen, and Ren Wang, "Inverse design method for horn antennas based on knowledge-embedded physics-informed neural networks," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 6, 1665-1669, 2024.
doi:10.1109/lawp.2024.3365690

20. Shereen, Muhammad Kamran, Xiaoguang Liu, Xiaohu Wu, Ayesha Naseem, and Muhammad Uzair, "Deep learning-inspired linear regression technique for accurate microstrip antenna performance analysis," 2025 4th International Conference on Electronics Representation and Algorithm (ICERA), 42-47, Yogyakarta, Indonesia, 2025.
doi:10.1109/ICERA66156.2025.11087309

21. Yao, He Ming, Min Li, Lijun Jiang, Kwan Lawrence Yeung, and Michael Ng, "Antenna array diagnosis using a deep learning approach," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 6, 5396-5401, 2024.
doi:10.1109/tap.2024.3387689

22. Chen, Ruonan, Cedric W. L. Lee, Peng Khiang Tan, and Theng Huat Gan, "Reflectarray antenna design using the deep learning controlnet diffusion model," 2025 19th European Conference on Antennas and Propagation (EuCAP), 1-5, Stockholm, Sweden, 2025.
doi:10.23919/EuCAP63536.2025.10999623

23. Nan, J., X. Cao, M. Gao, and P. Zhang, "A research method for reverse modeling of ultra-wideband antenna with dual notch characteristics based on ALO-LMBP neural network," National Conference on Microwave and Millimeter Wave (NCMMW'21), 354-356, Nanjing, China, May 2021.

24. Nan, Jingchang and Minghuan Wang, "Design and research of ultra-wideband stepped microstrip monopole antenna," Chinese Journal of Radio Science, Vol. 36, No. 2, 225-230, 2021.
doi:10.13443/j.cjors.2019111701

25. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox, "U-Net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241, Munich, Germany, Oct. 2015.

26. Tatli, Umut and Cafer Budak, "Biomedical image segmentation with modified U-Net," Traitement du Signal, Vol. 40, No. 2, 523-531, 2023.

27. Senapati, Pradip, Anusua Basu, Mainak Deb, and Krishna Gopal Dhal, "Sharp dense U-Net: An enhanced dense U-Net architecture for nucleus segmentation," International Journal of Machine Learning and Cybernetics, Vol. 15, No. 6, 2079-2094, 2024.
doi:10.1007/s13042-023-02017-y

28. Xu, Jiahuan, Dili Zeng, and Jiangbo Xi, "High resolution remote sensing semantic segmentation using bayesian of hyperparameters and improved U-Net," 2023 China Automation Congress (CAC), 7025-7029, Chongqing, China, Nov. 2023.
doi:10.1109/CAC59555.2023.10451909

29. Rajamani, Kumar T., Priya Rani, Hanna Siebert, Rajkumar Elagiri Ramalingam, and Mattias P. Heinrich, "Attention-augmented U-Net (AA-U-Net) for semantic segmentation," Signal, Image and Video Processing, Vol. 17, No. 4, 981-989, 2023.
doi:10.1007/s11760-022-02302-3

30. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Identity mappings in deep residual networks," European Conference on Computer Vision (ECCV'16), 630-645, Amsterdam, The Netherlands, Oct. 2016.

31. Perez, Ethan, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville, "FiLM: Visual reasoning with a general conditioning layer," Proceedings of the AAAI Conference on Artificial Intelligence (AAAI'18), 3942-3951, New Orleans, USA, Apr. 2018.
doi:10.1609/aaai.v32i1.11671

32. Hu, J., L. Shen, S. Albanie, G. Sun, and E. Wu, "Squeeze-and-excitation networks," IEEE Computer Society, Vol. 42, No. 8, 2011-2023, 2020.

33. Woo, Sanghyun, Jongchan Park, Joon-Young Lee, and In So Kweon, "CBAM: Convolutional block attention module," Proceedings of the European Conference on Computer Vision (ECCV'18), 3-19, Munich, Germany, Sep. 2018.

34. Loshchilov, I. and F. Hutter, "Decoupled weight decay regularization," International Conference on Learning Representations (ICLR'19), 1-8, New Orleans, USA, May 2019.