1. Andriulli, Francesco, Pai-Yen Chen, Danilo Erricolo, and Jian-Ming Jin, "Guest editorial machine learning in antenna design, modeling, and measurements," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 4948-4952, 2022.
doi:10.1109/tap.2022.3189963
2. Zhu, Zhiwei, Yubo Tian, and Jinlong Sun, "Antenna modeling based on image-CNN-LSTM," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 9, 2738-2742, 2024.
doi:10.1109/lawp.2024.3405996
3. Pantanowitz, Liron, Thomas Pearce, Ibrahim Abukhiran, Matthew Hanna, Sarah Wheeler, T. Rinda Soong, Ahmad P. Tafti, Joshua Pantanowitz, Ming Y. Lu, Faisal Mahmood, et al., "Nongenerative artificial intelligence in medicine: Advancements and applications in supervised and unsupervised machine learning," Modern Pathology, Vol. 38, No. 3, 100680, 2025.
doi:10.1016/j.modpat.2024.100680
4. Kuznietsov, Anton, Balint Gyevnar, Cheng Wang, Steven Peters, and Stefano V. Albrecht, "Explainable AI for safe and trustworthy autonomous driving: A systematic review," IEEE Transactions on Intelligent Transportation Systems, Vol. 25, No. 12, 19342-19364, 2024.
doi:10.1109/tits.2024.3474469
5. Xiong, Guangyu, Petri Helo, Steve Ekström, and Zhen Shen, "A service-oriented autonomous crane system," IEEE Transactions on Computational Social Systems, Vol. 11, No. 6, 8030-8045, 2024.
doi:10.1109/tcss.2024.3404395
6. Koziel, Slawomir, Nurullah Çalık, Peyman Mahouti, and Mehmet A. Belen, "Accurate modeling of antenna structures by means of domain confinement and pyramidal deep neural networks," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 3, 2174-2188, 2022.
doi:10.1109/tap.2021.3111299
7. Koziel, Slawomir, Nurullah Çalık, Peyman Mahouti, and Mehmet A. Belen, "Low-cost and highly accurate behavioral modeling of antenna structures by means of knowledge-based domain-constrained deep learning surrogates," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 105-118, 2023.
doi:10.1109/tap.2022.3216064
8. Wei, Zhaohui, Zhao Zhou, Peng Wang, Jian Ren, Yingzeng Yin, Gert Frølund Pedersen, and Ming Shen, "Fast and automatic parametric model construction of antenna structures using CNN-LSTM networks," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 2, 1319-1328, 2024.
doi:10.1109/TAP.2023.3346050
9. Su, Yue, Yifan Yin, Hongtai Chen, Shunli Li, Hongxin Zhao, Zhiguo Su, and Xiaoxing Yin, "Time-domain scattering parameters-based neural network inverse model for antenna designs," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 7, 1976-1980, 2024.
doi:10.1109/lawp.2024.3375303
10. Nan, J., Y. Du, M. Wang, and M. Gao, "Deep learning architecture and neural network optimization of ultra-wideband antenna modeling," Laser & Optoelectronics Progress, Vol. 59, No. 13, 1323001, 2022.
11. Nan, J., W. Sun, Y. Du, and M. Wang, "One-dimensional convolutional neural network modeling method for ultra-wideband antenna," Journal of Electronic Measurement and Instrument, Vol. 37, No. 2, 204-210, 2023.
12. Peng, Fengling and Xing Chen, "A low-cost optimization method for 2D antennas using a disassemblable convolutional neural network," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 9, 7057-7067, 2024.
doi:10.1109/TAP.2024.3437750
13. Huang, H., X.-S. Yang, and L. Yuan, "Antenna shape neural network modeling based on computer vision," National Conference on Microwave and Millimeter Wave (NCMMW'21), 691-693, Nanjing, China, May 2021.
14. Ninković, Darko, Shaik Basheeruddin Shah, Ahmed Altunaiji, Nazar Ali, and Dragan Olćan, "Comparison of ensembles of deep neural networks and mixture of experts for antenna modeling," IEEE Antennas and Wireless Propagation Letters, 1-5, 2025.
doi:10.1109/lawp.2025.3574176
15. Liu, Peiran, Dawei Liu, Yaoyao Li, Shuaipeng Ye, and Donglin Su, "Attention-based resnet for radiation pattern prediction of phased array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 12, 4453-4457, 2024.
doi:10.1109/lawp.2024.3451142
16. Jin, Jie, Qian Su, Yan Xu, Zhengrui He, and Yu Lu, "Efficient radiation pattern prediction of array antennas based on complex-valued graph neural networks," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 12, 2467-2471, 2022.
doi:10.1109/lawp.2022.3197441
17. Karahan, Emir Ali, Aggraj Gupta, Uday K. Khankhoje, and Kaushik Sengupta, "Deep learning based modeling and inverse design for arbitrary planar antenna structures at RF and millimeter-wave," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 499-500, Denver, CO, USA, Jul. 2022.
doi:10.1109/AP-S/USNC-URSI47032.2022.9887077
18. Gosal, G., D. A. McNamara, and M. C. E. Yagoub, "The use of inverse neural networks in transmitarray antenna design," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1272-1273, Memphis, TN, USA, 2014.
doi:10.1109/APS.2014.6904963
19. Liu, Jin-Pin, Bing-Zhong Wang, Chuan-Sheng Chen, and Ren Wang, "Inverse design method for horn antennas based on knowledge-embedded physics-informed neural networks," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 6, 1665-1669, 2024.
doi:10.1109/lawp.2024.3365690
20. Shereen, Muhammad Kamran, Xiaoguang Liu, Xiaohu Wu, Ayesha Naseem, and Muhammad Uzair, "Deep learning-inspired linear regression technique for accurate microstrip antenna performance analysis," 2025 4th International Conference on Electronics Representation and Algorithm (ICERA), 42-47, Yogyakarta, Indonesia, 2025.
doi:10.1109/ICERA66156.2025.11087309
21. Yao, He Ming, Min Li, Lijun Jiang, Kwan Lawrence Yeung, and Michael Ng, "Antenna array diagnosis using a deep learning approach," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 6, 5396-5401, 2024.
doi:10.1109/tap.2024.3387689
22. Chen, Ruonan, Cedric W. L. Lee, Peng Khiang Tan, and Theng Huat Gan, "Reflectarray antenna design using the deep learning controlnet diffusion model," 2025 19th European Conference on Antennas and Propagation (EuCAP), 1-5, Stockholm, Sweden, 2025.
doi:10.23919/EuCAP63536.2025.10999623
23. Nan, J., X. Cao, M. Gao, and P. Zhang, "A research method for reverse modeling of ultra-wideband antenna with dual notch characteristics based on ALO-LMBP neural network," National Conference on Microwave and Millimeter Wave (NCMMW'21), 354-356, Nanjing, China, May 2021.
24. Nan, Jingchang and Minghuan Wang, "Design and research of ultra-wideband stepped microstrip monopole antenna," Chinese Journal of Radio Science, Vol. 36, No. 2, 225-230, 2021.
doi:10.13443/j.cjors.2019111701
25. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox, "U-Net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-Assisted Intervention, 234-241, Munich, Germany, Oct. 2015.
26. Tatli, Umut and Cafer Budak, "Biomedical image segmentation with modified U-Net," Traitement du Signal, Vol. 40, No. 2, 523-531, 2023.
27. Senapati, Pradip, Anusua Basu, Mainak Deb, and Krishna Gopal Dhal, "Sharp dense U-Net: An enhanced dense U-Net architecture for nucleus segmentation," International Journal of Machine Learning and Cybernetics, Vol. 15, No. 6, 2079-2094, 2024.
doi:10.1007/s13042-023-02017-y
28. Xu, Jiahuan, Dili Zeng, and Jiangbo Xi, "High resolution remote sensing semantic segmentation using bayesian of hyperparameters and improved U-Net," 2023 China Automation Congress (CAC), 7025-7029, Chongqing, China, Nov. 2023.
doi:10.1109/CAC59555.2023.10451909
29. Rajamani, Kumar T., Priya Rani, Hanna Siebert, Rajkumar Elagiri Ramalingam, and Mattias P. Heinrich, "Attention-augmented U-Net (AA-U-Net) for semantic segmentation," Signal, Image and Video Processing, Vol. 17, No. 4, 981-989, 2023.
doi:10.1007/s11760-022-02302-3
30. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, "Identity mappings in deep residual networks," European Conference on Computer Vision (ECCV'16), 630-645, Amsterdam, The Netherlands, Oct. 2016.
31. Perez, Ethan, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville, "FiLM: Visual reasoning with a general conditioning layer," Proceedings of the AAAI Conference on Artificial Intelligence (AAAI'18), 3942-3951, New Orleans, USA, Apr. 2018.
doi:10.1609/aaai.v32i1.11671
32. Hu, J., L. Shen, S. Albanie, G. Sun, and E. Wu, "Squeeze-and-excitation networks," IEEE Computer Society, Vol. 42, No. 8, 2011-2023, 2020.
33. Woo, Sanghyun, Jongchan Park, Joon-Young Lee, and In So Kweon, "CBAM: Convolutional block attention module," Proceedings of the European Conference on Computer Vision (ECCV'18), 3-19, Munich, Germany, Sep. 2018.
34. Loshchilov, I. and F. Hutter, "Decoupled weight decay regularization," International Conference on Learning Representations (ICLR'19), 1-8, New Orleans, USA, May 2019.