Vol. 134
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-08-24
Low-Frequency Dual-Port Microwave Sensor Based on CSRR and Electric Field Coupled for Precise Permittivity Detection in Biological Samples
By
Progress In Electromagnetics Research M, Vol. 134, 87-98, 2025
Abstract
This paper presents the development of a low-frequency dual-port microwave sensor designed for permittivity detection in both solid and biological materials. The sensor integrates a circular split-ring resonator (CSRR) with an electric field coupled (ELC) structure on a planar dielectric substrate, resulting in a compact and simple architecture that supports ease of fabrication and low-cost implementation. Operating at a resonant frequency of 0.86 GHz, the sensor is particularly suitable for characterising biological samples such as meat, fish, squid, and chicken, as lower frequencies offer deeper penetration and better interaction with high-loss biological tissues. Validation through full-wave simulation and experimental measurement confirms the sensor's capability to detect permittivity variations across a wide range of materials. A polynomial fitting model is employed to extract permittivity values based on resonance frequency shifts, achieving accurate results with a maximum error below 7% and overall accuracy exceeding 93%. The device demonstrates reliable performance in estimating permittivity values from εr = 1-9.8, including unknown biological samples with normalized sensitivity of 0.02% and frequency detection resolution 0.019 GHz. Measurements show clear frequency shifts that correlate with dielectric changes, and the experimental results align closely with the simulation data. The simple structure of the sensor also supports straightforward integration with common measurement instruments such as vector network analysers, making it practical for real-time monitoring and portable applications. The low operating frequency combined with the straightforward design provides an effective solution for applications requiring permittivity detection of lossy, heterogeneous, or biological materials. This work contributes a feasible and efficient sensor platform for use in medical diagnostics, food quality inspection, and other industrial contexts where reliable, low-cost dielectric sensing is essential.
Citation
Muhammad Nugrah Kusumah, Syah Alam, Indra Surjati, Lydia Sari, Yuli Kurnia Ningsih, Fitri Kurnia Sari, Teguh Firmansyah, Noor Azwan Shairi, and Zahriladha Zakaria, "Low-Frequency Dual-Port Microwave Sensor Based on CSRR and Electric Field Coupled for Precise Permittivity Detection in Biological Samples," Progress In Electromagnetics Research M, Vol. 134, 87-98, 2025.
doi:10.2528/PIERM25062103
References

1. Al-Behadili, Amer Abbood, Iulia Andreea Mocanu, Norocel Codreanu, and Mihaela Pantazica, "Modified split ring resonators sensor for accurate complex permittivity measurements of solid dielectrics," Sensors, Vol. 20, No. 23, 6855, 2020.
doi:10.3390/s20236855

2. Fahmy, Heba M., Hagar Ismail Helmy, Fatma Elzahraa Ali, Nourhan Essam Motei, and Marwa Saeed Fathy, "Industrial applications of sensors," Handbook of Nanosensors: Materials and Technological Applications, 1-34, Springer, 2023.
doi:10.1007/978-3-031-47180-3_55

3. Alahnomi, Rammah Ali, Zahriladha Zakaria, Eliyana Ruslan, Siti Rosmaniza Ab Rashid, and Amyrul Azuan Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," IEEE Sensors Journal, Vol. 17, No. 9, 2766-2775, May 2017.
doi:10.1109/jsen.2017.2682266

4. Yeo, Junho and Jong-Ig Lee, "High-sensitivity microwave sensor based on an interdigital-capacitor-shaped defected ground structure for permittivity characterization," Sensors, Vol. 19, No. 3, 498, 2019.
doi:10.3390/s19030498

5. Morales-Lovera, Hector-Noel, Jose-Luis Olvera-Cervantes, Aldo-Eleazar Perez-Ramos, Alonso Corona-Chavez, and Carlos E. Saavedra, "Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques," Scientific Reports, Vol. 12, No. 1, 2205, 2022.
doi:10.1038/s41598-022-06259-8

6. Royo, Iris, Raúl Fernández-García, and Ignacio Gil, "Microwave resonators for wearable sensors design: A systematic review," Sensors, Vol. 23, No. 22, 9103, Nov. 2023.
doi:10.3390/s23229103

7. Wang, Cong, Luqman Ali, Fan-Yi Meng, Kishor Kumar Adhikari, Zhong Liang Zhou, Yu Chen Wei, Dan Qing Zou, and He Yu, "High-accuracy complex permittivity characterization of solid materials using parallel interdigital capacitor-based planar microwave sensor," IEEE Sensors Journal, Vol. 21, No. 5, 6083-6093, Mar. 2021.
doi:10.1109/JSEN.2020.3041014

8. Muñoz-Enano, Jonathan, Paris Vélez, Marta Gil, and Ferran Martín, "Planar microwave resonant sensors: A review and recent developments," Applied Sciences, Vol. 10, No. 7, 2615, Apr. 2020.
doi:10.3390/app10072615

9. Alam, Syah, Zahriladha Zakaria, Indra Surjati, Noor Azwan Shairi, Mudrik Alaydrus, and Teguh Firmansyah, "Dual-band independent permittivity sensor using single-port with a pair of U-shaped structures for solid material detection," IEEE Sensors Journal, Vol. 22, No. 16, 16111-16119, Aug. 2022.
doi:10.1109/JSEN.2022.3191345

10. Al-Gburi, Ahmed Jamal Abdullah, Norhanani Abd Rahman, Zahriladha Zakaria, and Merih Palandoken, "Detection of semi-solid materials utilizing triple-rings CSRR microwave sensor," Sensors, Vol. 23, No. 6, 3058, Mar. 2023.
doi:10.3390/s23063058

11. Guo, Zhiwei, Yuqian Wang, Shaolin Ke, Xiaoqiang Su, Jie Ren, and Hong Chen, "1D photonic topological insulators composed of split ring resonators: A mini review," Advanced Physics Research, Vol. 3, No. 6, 2300125, Jun. 2024.
doi:10.1002/apxr.202300125

12. Saadat-Safa, Maryam, Vahid Nayyeri, Mostafa Khanjarian, Mohammad Soleimani, and Omar M. Ramahi, "A CSRR-based sensor for full characterization of magneto-dielectric materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 806-814, Feb. 2019.
doi:10.1109/TMTT.2018.2882826

13. Alam, Syah, Indra Surjati, Lydia Sari, R. Deiny Mardian, Marouane Abicha, Zahriladha Zakaria, Teguh Firmansyah, Mudrik Alaydrus, and Yusnita Rahayu, "Dual functional liquid displacement and angular detection based on band stop response microwave sensor," IEEE Access, Vol. 12, 94861-94869, 2024.
doi:10.1109/ACCESS.2024.3425159

14. Kiani, Sina, Pejman Rezaei, and Mina Fakhr, "Dual-frequency microwave resonant sensor to detect noninvasive glucose-level changes through the fingertip," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-8, 2021.
doi:10.1109/TIM.2021.3052011

15. Masrakin, Khuzairi, Siti Zuraidah Ibrahim, Hasliza A. Rahim, Saidatul Norlyana Azemi, Ping Jack Soh, and Sugchai Tantiviwat, "Microstrip sensor based on ring resonator coupled with double square split ring resonator for solid material permittivity characterization," Micromachines, Vol. 14, No. 4, 790, 2023.
doi:10.3390/mi14040790

16. Agarwal, Smriti and Manoj Chandra Garg, "Design of an accurate, planar, resonant microwave sensor for testing a wide range of liquid samples," Electronics, Vol. 13, No. 22, 4510, Nov. 2024.
doi:10.3390/electronics13224510

17. Ebrahimi, Amir, James Scott, and Kamran Ghorbani, "Differential sensors using microstrip lines loaded with two split-ring resonators," IEEE Sensors Journal, Vol. 18, No. 14, 5786-5793, Jul. 2018.
doi:10.1109/JSEN.2018.2840691

18. Abd Rahman, Norhanani, Zahriladha Zakaria, Rosemizi Abd Rahim, Maizatul Alice Meor Said, Amyrul Azuan Mohd Bahar, Rammah A. Alahnomi, and Ammar Alhegazi, "High quality factor using nested complementary split ring resonator for dielectric properties of solids sample," Applied Computational Electromagnetics Society Journal (ACES), Vol. 35, No. 10, 1222-1227, 2020.
doi:10.47037/2020.ACES.J.351016

19. Jang, Se-Young and Jong-Ryul Yang, "Double split-ring resonator for dielectric constant measurement of solids and liquids," Journal of Electromagnetic Engineering and Science, Vol. 22, No. 2, 122-128, 2022.
doi:10.26866/jees.2022.2.r.68

20. Al-Gburi, Ahmed Jamal Abdullah, Zahriladha Zakaria, Norhanani Abd Rahman, Syah Alam, and Maizatul Alice Meor Said, "A compact and low-profile curve-feed complementary split-ring resonator microwave sensor for solid material detection," Micromachines, Vol. 14, No. 2, 384, Feb. 2023.
doi:10.3390/mi14020384

21. Alam, Syah, Indra Surjati, Lydia Sari, Yuli K. Ningsih, Munanda Y. Fathanah, Yessi K. Gultom, Ghathfan Daffin, Teguh Firmansyah, and Zahriladha Zakaria, "UHF-band solid sensor based on tweaking electric field coupled resonator for material characterization," Progress In Electromagnetics Research M, Vol. 126, 11-18, 2024.
doi:10.2528/PIERM24020201