1. Long, S., M. McAllister, and Liang Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 406-412, May 1983.
doi:10.1109/tap.1983.1143080 Google Scholar
2. Mongia, Rajesh K. and Prakash Bhartia, "Dielectric resonator antennas --- A review and general design relations for resonant frequency and bandwidth," International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 4, No. 3, 230-247, Jul. 1994.
doi:10.1002/mmce.4570040304 Google Scholar
3. Petosa, Aldo and Apisak Ittipiboon, "Dielectric resonator antennas: A historical review and the current state of the art," IEEE Antennas and Propagation Magazine, Vol. 52, No. 5, 91-116, Oct. 2010.
doi:10.1109/map.2010.5687510 Google Scholar
4. Ren, Jian, Zhihui Wang, Yu-Xiang Sun, Ruyao Huang, and Yingzeng Yin, "Ku/Ka-band dual-frequency shared-aperture antenna array with high isolation using frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 7, 1736-1740, Jul. 2023.
doi:10.1109/lawp.2023.3262568 Google Scholar
5. Ding, Yan Ran, Yu Jian Cheng, Jian Xu Sun, Lei Wang, and Ting Jun Li, "Dual-band shared-aperture two-dimensional phased array antenna with wide bandwidth of 25.0% and 11.4% at Ku-and Ka-band," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 9, 7468-7477, Sep. 2022.
doi:10.1109/TAP.2022.3146867 Google Scholar
6. Mongia, Rajesh K. and Prakash Bhartia, "Dielectric resonator antennas --- A review and general design relations for resonant frequency and bandwidth," International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 4, No. 3, 230-247, Jul. 1994.
doi:10.1002/mmce.4570040304 Google Scholar
7. Toh, B. Y., R. Cahill, and V. F. Fusco, "Understanding and measuring circular polarization," IEEE Transactions on Education, Vol. 46, No. 3, 313-318, Aug. 2003.
doi:10.1109/te.2003.813519 Google Scholar
8. Petosa, Aldo, Dielectric Resonator Antenna Handbook, Artech House, 2007.
doi:10.1109/aps.2009.5171979
9. Attia, Hussein, Ahmad Abdalrazik, Mohammad S. Sharawi, and Ahmed A. Kishk, "Wideband circularly polarized millimeter-wave DRA array for internet of things," IEEE Internet of Things Journal, Vol. 10, No. 11, 9597-9606, Jun. 2023.
doi:10.1109/jiot.2023.3235344 Google Scholar
10. Liu, Wen-Wen, Zhen-Hua Cao, and Zhi Wang, "A wideband circularly polarized dielectric resonator antenna array," IEEE Access, Vol. 9, 99589-99594, Jul. 2020.
doi:10.1109/access.2020.3011983 Google Scholar
11. Dash, Upali Aparajita, Dipanjan Dutta, and Sasmita Pahadsingh, "Circularly polarized stepped rectangular DRA for mid-band 5G application," 2023 IEEE 3rd International Conference on Applied Electromagnetics, Signal Processing, & Communication (AESPC), 1-4, Bhubaneswar, India, Nov. 2023.
doi:10.1109/aespc59761.2023.10390390
12. Kumar, Rajkishor, Dilip Kumar Choudhary, Reshma Singh, and Raghvendra Kumar Chaudhary, "A wideband circularly polarized DRA excited with meandered-line inductor for Wi-MAX/LTE2500 applications," 2017 Progress in Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1514-1519, Singapore, Nov. 2017.
doi:10.1109/piers-fall.2017.8293371
13. Varshney, Gaurav, "Gain and bandwidth enhancement of a singly-fed circularly polarised dielectric resonator antenna," IET Microwaves, Antennas & Propagation, Vol. 14, No. 12, 1323-1330, Oct. 2020.
doi:10.1049/iet-map.2019.0932 Google Scholar
14. Zhao, Ge, Yi Zhou, Jing Rui Wang, and Mei Song Tong, "A circularly polarized dielectric resonator antenna based on quasi-self-complementary metasurface," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 8, 7147-7151, 2022.
doi:10.1109/tap.2022.3145504 Google Scholar
15. Elahi, Manzoor, Amir Altaf, Youngoo Yang, Kang-Yoon Lee, and Keum Cheol Hwang, "Circularly polarized dielectric resonator antenna with two annular vias," IEEE Access, Vol. 9, 41123-41128, Mar. 2021.
doi:10.1109/access.2021.3064026 Google Scholar
16. Tong, Changwu, Hauke Ingolf Kremer, Nan Yang, and Kwok Wa Leung, "Compact wideband circularly polarized dielectric resonator antenna with dielectric vias," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 1100-1104, 2022.
doi:10.1109/lawp.2022.3158338 Google Scholar
17. Perron, Alexandre, Tayeb A. Denidni, and Abdel R. Sebak, "Circularly polarized microstrip/elliptical dielectric ring resonator antenna for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 783-786, 2010.
doi:10.1109/lawp.2010.2064750 Google Scholar
18. Akbari, M., S. Gupta, M. Farahani, A. R. Sebak, and T. A. Denidni, "Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5542-5546, Dec. 2016.
doi:10.1109/tap.2016.2623655 Google Scholar
19. Faenzi, Marco, Gabriele Minatti, David González-Ovejero, Francesco Caminita, Enrica Martini, Cristian Della Giovampaola, and Stefano Maci, "Metasurface antennas: New models, applications and realizations," Scientific Reports, Vol. 9, No. 1, 10178, Jul. 2019.
doi:10.1038/s41598-019-46522-z Google Scholar
20. Bukhari, Syed S., J. Vardaxoglou, and William Whittow, "A metasurfaces review: Definitions and applications," Applied Sciences, Vol. 9, No. 13, 2727, Jul. 2019.
doi:10.3390/app9132727 Google Scholar
21. Nasimuddin, N., Zhi Ning Chen, and Xianming Qing, "Bandwidth enhancement of a single-feed circularly polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular microstrip antenna," IEEE Antennas and Propagation Magazine, Vol. 58, No. 2, 39-46, 2016.
doi:10.1109/MAP.2016.2520257 Google Scholar
22. Sheersha, Jils A., N. Nasimuddin, and Arokiaswami Alphones, "A high gain wideband circularly polarized antenna with asymmetric metasurface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 7, e21740, 2019.
doi:10.1002/mmce.21740 Google Scholar
23. Park, Ikmo, "Application of metasurfaces in the design of performance-enhanced low-profile antennas," EPJ Applied Metamaterials, Vol. 5, 11, 2018.
doi:10.1051/epjam/2018008 Google Scholar