Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-22
Compact MSL-Fed CWG Polarizer Using Corner-Truncated Patch
By
Progress In Electromagnetics Research C, Vol. 159, 38-47, 2025
Abstract
In this paper, a compact microstrip line (MSL)-to-circular waveguide (CWG) transition using a rectangular patch is introduced. As the rectangular patch is placed 2.68 mm (0.043 λg) away from the short-circuited plane of the CWG, the transition is very compact. By truncating the rectangular patch of the compact MSL-to-CWG transition, a compact MSL-fed CWG polarizer using the corner-truncated patch is proposed. The proposed polarizer has a compact size and a phase difference of -90.97° at 9.65 GHz. The axial ratio is within ±1 dB from 8.5 GHz to 10 GHz. The reflection coefficient is smaller than -10 dB from 9.03 GHz to 10.5 GHz. In addition, as the corner-truncated patch is adopted, the proposed polarizer does not require a complex manufacturing process on the waveguide. Moreover, as the microstrip line feeds the polarizer, it can be easily integrated with other planar circuits. To verify the simulation results, the MSL-fed CWG polarizer using the corner-truncated patch is fabricated and measured. The simulation and measurement results are in good agreement.
Citation
Ir-Ving Tseng, and Chun-Long Wang, "Compact MSL-Fed CWG Polarizer Using Corner-Truncated Patch," Progress In Electromagnetics Research C, Vol. 159, 38-47, 2025.
doi:10.2528/PIERC25062401
References

1. Yao, Hui-Wen, Amr Abdelmonem, Ji-Fuh Liang, and Kawthar A Zaki, "Analysis and design of microstrip-to-waveguide transitions," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2371-2380, 1994.
doi:10.1109/22.339769

2. Hannachi, C., T. Djerafi, and S. O. Tatu, "Broadband E-band WR12 to microstrip line transition using a ridge structure on high-permittivity thin-film material," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 7, 552-554, 2018.
doi:10.1109/lmwc.2018.2835475

3. Pérez, Jose M., Ainara Rebollo, Ramón Gonzalo, and Iñigo Ederra, "An inline microstrip-to-waveguide transition operating in the full W-band based on a Chebyshev multisection transformer," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 36, No. 8, 734-744, 2015.
doi:10.1007/s10762-015-0167-3

4. Pérez Escudero, Jose Manuel, Alicia E. Torres-García, Ramón Gonzalo, and Iñigo Ederra, "A simplified design inline microstrip-to-waveguide transition," Electronics, Vol. 7, No. 10, 215, 2018.
doi:10.3390/electronics7100215

5. Li, Jian, Yongjun Huang, Yi Li, Guangjun Wen, and Fulin Xiao, "Wideband transition between rectangular waveguide and microstrip using asymmetric fin line probe," Electronics Letters, Vol. 53, No. 7, 490-492, 2017.
doi:10.1049/el.2016.3629

6. Lin, Ting-Huei and Ruey-Beei Wu, "A broadband microstrip-to-waveguide transition with tapered CPS probe," 2002 32nd European Microwave Conference, 1-4, Milan, Italy, 2002.
doi:10.1109/euma.2002.339360

7. Lou, Yu, Chi Hou Chan, and Quan Xue, "An in-line waveguide-to-microstrip transition using radial-shaped probe," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 311-313, 2008.
doi:10.1109/lmwc.2008.922114

8. Kaneda, Noriaki, Yongxi Qian, and Tatsuo Itoh, "A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 12, 2562-2567, 2002.
doi:10.1109/22.809007

9. Kim, Jungsik, Wonseok Choe, and Jinho Jeong, "Submillimeter-wave waveguide-to-microstrip transitions for wide circuits/wafers," IEEE Transactions on Terahertz Science and Technology, Vol. 7, No. 4, 440-445, 2017.
doi:10.1109/tthz.2017.2701151

10. Shih, Y.-C., T.-N. Ton, and Long Q. Bui, "Waveguide-to-microstrip transitions for millimeter-wave applications," 1988 IEEE MTT-S International Microwave Symposium Digest, 473-475, New York, NY, USA, 1988.
doi:10.1109/mwsym.1988.22077

11. Zaman, Ashraf Uz, Vessen Vassilev, Per-Simon Kildal, and Herbert Zirath, "Millimeter wave E-plane transition from waveguide to microstrip line with large substrate size related to mmic integration," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 7, 481-483, 2016.
doi:10.1109/lmwc.2016.2574995

12. Li, Eric S., Gui-Xiang Tong, and Dow Chih Niu, "Full W-band waveguide-to-microstrip transition with new E-plane probe," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 4-6, 2013.
doi:10.1109/lmwc.2012.2235176

13. Lin, Chi-Chang and Yuh-Jing Hwang, "Single-sleeve waveguide-to-microstrip transition probe for full waveguide bandwidth," 2012 42nd European Microwave Conference, 766-769, Amsterdam, Netherlands, 2012.
doi:10.23919/eumc.2012.6459085

14. Wu, Chengkai, Yong Zhang, Yuehang Xu, Bo Yan, and Ruimin Xu, "Millimeter-wave waveguide-to-microstrip transition with a built-in DC/IF return path," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 2, 1295-1304, 2020.
doi:10.1109/tmtt.2020.3041257

15. Zaman, A. Uz, V. Vassilev, H. Zirath, and N. Rorsman, "Novel low-loss millimeter-wave transition from waveguide-to-microstrip line suitable for MMIC integration and packaging," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 12, 1098-1100, 2017.
doi:10.1109/lmwc.2017.2764740

16. Wu, Chengkai, Yong Zhang, Yukun Li, Huali Zhu, Fei Xiao, Bo Yan, and Ruimin Xu, "Millimeter-wave waveguide-to-microstrip inline transition using a wedge-waveguide iris," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 2, 1087-1096, 2021.
doi:10.1109/tmtt.2021.3123349

17. Fang, Ruei-Ying and Chun-Long Wang, "Miniaturized microstrip-to-waveguide transition using capacitance-compensated broadside-coupled microstrip line," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 9, 1588-1596, 2013.
doi:10.1109/tcpmt.2013.2244644

18. Chuang, Jiun-Kai, Ruei-Ying Fang, and Chun-Long Wang, "Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes," Electronics Letters, Vol. 48, No. 6, 332-333, 2012.
doi:10.1049/el.2011.3673

19. Varshney, Atul, Vipul Sharma, Issa Elfergani, Chemseddine Zebiri, Zoran Vujicic, and Jonathan Rodriguez, "An inline V-band WR-15 transition using antipodal dipole antenna as RF energy launcher@ 60 GHz for satellite applications," Electronics, Vol. 11, No. 23, 3860, 2022.
doi:10.3390/electronics11233860

20. Varshney, Atul, Vipul Sharma, Chittaranjan Nayak, Amit Kumar Goyal, and Yehia Massoud, "A low-loss impedance transformer-less fish-tail-shaped MS-to-WG transition for K-/Ka-/Q-/U-band applications," Electronics, Vol. 12, No. 3, 670, 2023.
doi:10.3390/electronics12030670

21. Varshney, Atul, Vipul Sharma, and Arun Agarwal, "Next-generation MS-to-RWG interconnects for microwave and mm-wave communications using microstrip antenna as RF energy launcher @ 140 GHz," Journal of The Institution of Engineers (India): Series B, Vol. 104, No. 3, 749-756, 2023.
doi:10.1007/s40031-023-00889-w

22. Yoneda, N., R. Miyazaki, I. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 12, 2446-2452, Dec. 2000.
doi:10.1109/22.898996

23. Virone, Giuseppe, Riccardo Tascone, Oscar Antonio Peverini, and Renato Orta, "Optimum-iris-set concept for waveguide polarizers," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 3, 202-204, Mar. 2007.
doi:10.1109/lmwc.2006.890474

24. Bertin, G., B. Piovano, L. Accatino, and M. Mongiardo, "Full-wave design and optimization of circular waveguide polarizers with elliptical irises," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1077-1083, Apr. 2002.
doi:10.1109/22.993409

25. Albertsen, N. Chr. and P. Skov-Madsen, "A compact septum polarizer," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No. 8, 654-660, Aug. 1983.
doi:10.1109/tmtt.1983.1131564

26. Behe, R. and P. Brachat, "Compact duplexer-polarizer with semicircular waveguide (antenna feed)," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 8, 1222-1224, Aug. 1991.
doi:10.1109/8.97358

27. Ege, T. and P. McAndrew, "Analysis of stepped septum polarisers," Electronics Letters, Vol. 21, No. 24, 1166-1168, Nov. 1985.
doi:10.1049/el:19850825

28. Wang, Shih-Wei, Chih-Hung Chien, Chun-Long Wang, and Ruey-Beei Wu, "A circular polarizer designed with a dielectric septum loading," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 7, 1719-1723, Jul. 2004.
doi:10.1109/tmtt.2004.830487

29. Subbarao, B. and V. F. Fusco, "Compact coaxial-fed CP polarizer," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 145-147, 2004.
doi:10.1109/lawp.2004.831084

30. Jeon, K. J., K. J. Lee, T. K. Lee, J. W. Lee, and W. K. Lee, "Circular polarization generating coaxial to waveguide adapter for horn antenna," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, Barcelona, Spain, 2010.
doi:10.1109/ubicomm.2008.29

31. Stutzman, Warren L. and Gary A. Thiele, Antenna Theory and Design, John Wiley & Sons, 2012.
doi:10.1002/0471654507.erfme010

32. Polat, H. K., Miracc D. Geyikoglu, and Bulent Cavusoglu, "Modeling and validation of a new reconfigurable patch antenna through equivalent lumped circuit-based design for minimum tuning effort," Microwave and Optical Technology Letters, Vol. 62, No. 6, 2335-2345, 2020.
doi:10.1002/mop.32332