Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-25
Innovative Design of a Miniaturized Wideband Port-Multiplexing Microstrip Circuit
By
Progress In Electromagnetics Research C, Vol. 159, 65-69, 2025
Abstract
This paper presents a miniaturized broadband port-reuse microstrip circuit to address the challenges of bulky volume, excessive insertion loss, and parameter deviation superposition caused by discrete port design and discrete circuit design in the interconnection between active phased array antennas and T/R components. Based on an integrated design methodology, the circuit achieves bandpass filtering, bidirectional power coupling output, DC power supply port functionality, and RF/DC isolation through a single-port interconnection. Experimental results demonstrate that the implemented circuit in Ku-band exhibits 13.5-15.18 GHz bandpass filtering characteristics, bidirectional signal power monitoring capability, 0-12 V/2.5 A DC power supply functionality, and effective RF/DC signal isolation. The measured results align well with theoretical predictions. This architecture demonstrates exceptional adaptability and seamless integration capability, showing significant potential for large-scale deployment in various transceiver architectures such as satellite communication systems.
Citation
Run-Lin Zhang, Tao Fang, and Tao Tang, "Innovative Design of a Miniaturized Wideband Port-Multiplexing Microstrip Circuit," Progress In Electromagnetics Research C, Vol. 159, 65-69, 2025.
doi:10.2528/PIERC25062701
References

1. Lu, Jixi, Jiyi Bian, and Bo Zhou, "Miniaturized lumped-element LTCC quadrature hybrid with LC stacked structure," Progress In Electromagnetics Research Letters, Vol. 106, 75-80, 2022.
doi:10.2528/pierl22070403

2. Yu, Zhong Jun, Zheng Xu, Yun-Kai Deng, and Zhi-Guang Zhang, "An overall LTCC package solution for X-band tile T/R module," Progress In Electromagnetics Research Letters, Vol. 38, 181-192, 2013.
doi:10.2528/pierl13011009

3. Ali, Ahmad, Muhammad Nabeel Awan, Waqar Ahmad Malik, Sohaib Yaqoob Chaudhry, Hidayatullah, and Jamal Haider, "A compact and high gain X/Ku band shared aperture antenna array with enhanced inter-band and cross-band isolation," IEEE Access, Vol. 12, 146137-146146, 2024.
doi:10.1109/access.2024.3406547

4. Bai, Mindan and Hong Liang, "The analysis of impedance matching problem in RF circuit design," 2010 International Forum on Information Technology and Applications, Vol. 1, 350-353, Kunming, China, 2010.
doi:10.1109/IFITA.2010.55

5. Wang, Hui, Chen Chen, Lifang Ha, Shiming Xie, Guangfu Ning, Mei Su, and Xinyan Huang, "Design method of impedance matching network for high power cascaded class-E inverter," IEEE Journal of Emerging and Selected Topics in Industrial Electronics, Vol. 6, No. 1, 327-337, 2025.
doi:10.1109/jestie.2024.3425750

6. Cheng, Steven Matthew and Dimitra Psychogiou, "Compact multi-band filter/diplexer LNAs using split-type multi-resonant stages," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 71, No. 10, 4512-4523, 2024.
doi:10.1109/tcsi.2024.3430376

7. Tang, Tao, Runlin Zhang, Maged A. Aldhaeebi, and Thamer S. Almoneef, "Self-packaged compact filter array: Innovations based on modified substrate integrated suspension line technology," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 15, No. 5, 1025-1031, 2025.
doi:10.1109/tcpmt.2025.3554181

8. Zhang, Youming, Fengyi Huang, Xusheng Tang, Junjie Li, Zhennan Wei, and Yunqi Cao, "A 4 × 4 fully integrated RF transceiver in 6 GHz frequency band with single-channel bandwidth of 400 MHz and PHY data-rate of 8.8 Gbps," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 72, No. 5, 723-727, 2025.
doi:10.1109/tcsii.2025.3552472

9. Bai, Haoyu, Ling Hao, Dong Wang, Ningyuan Zhang, Keer Gao, Jiaqi He, Jiazheng Zhou, Junhua Liu, and Huailin Liao, "A sub-6 GHz wideband transceiver chipset with calibration-friendly harmonic rejection RF front-ends," IEEE Transactions on Microwave Theory and Techniques, Vol. 73, No. 4, 2084-2096, 2025.
doi:10.1109/tmtt.2025.3535587

10. Timmins, I. and Ke-Li Wu, "An efficient systematic approach to model extraction for passive microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 9, 1565-1573, 2000.
doi:10.1109/22.869009

11. Priyansha, K. R. Samatha, and S. Sivasundarapandian, "A novel input output impedance matching network for LNA," 2016 International Conference on Communication and Signal Processing (ICCSP), 2089-2093, Melmaruvathur, India, 2016.
doi:10.1109/iccsp.2016.7754546

12. Drumea, A. and C. I. Marghescu, "Study on techniques for the increase of the current carrying capability of the PCB tracks," 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), 374-377, Timisoara, Romania, 2021.
doi:10.1109/SIITME53254.2021.9663645

13. Zhang, Gang, Zhenyao Qian, Xinde Zhang, and Jiquan Yang, "A general and effective design method of multi-way filtering power dividers on a new multi-port topology for industrial application," IEEE Transactions on Industrial Electronics, Vol. 68, No. 6, 5436-5447, 2021.
doi:10.1109/tie.2020.2992009

14. Chen, Chi-Feng, Kai-Wei Zhou, Ruei-Yi Chen, Hsin-Ya Tseng, Yi-Hua He, Wen-Jie Li, and Jun-Hong Weng, "Design of microstrip multifunction integrated diplexers with frequency division, frequency selection, and power division functions," IEEE Access, Vol. 9, 53232-53242, 2021.
doi:10.1109/access.2021.3070319