1. Harrington, R. F., "Field computation by moment methods," The Macmillan Comp., Vol. 130, No. 6, 276-280, 1968. Google Scholar
2. Burke, G. J., E. K. Miller, S. Chakrabarti, and K. Demarest, "Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Transactions on Magnetics, Vol. 25, No. 4, 2807-2809, Jul. 1989.
doi:10.1109/20.34291 Google Scholar
3. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
4. Hu, Jun, Zaiping Nie, Xiaofeng Que, and Min Meng, "Fast computation of scattering from 3D complex structures by MLFMA," Journal of Systems Engineering and Electronics, Vol. 19, No. 5, 872-877, Oct. 2008.
doi:10.1016/S1004-4132(08)60166-8 Google Scholar
5. Xu, X. M. and Q. H. Liu, "Fast spectral-domain method for acoustic scattering problems," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, No. 2, 522-529, Mar. 2001.
doi:10.1109/58.911735 Google Scholar
6. Nie, Xiao Chun, Ning Yuan, Le Wei Li, and Yeow Beng Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3526-3533, Nov. 2008.
doi:10.1109/TAP.2008.2005455 Google Scholar
7. Zhao, Kezhong, M. N. Vouvakis, and Jin-Fa Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898 Google Scholar
8. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
9. Lucente, Eugenio, Agostino Monorchio, and Raj Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166 Google Scholar
10. Wang, Pan, Zhonggen Wang, Yufa Sun, and Wenyan Nie, "A characteristic mode basis function method for solving wide-angle electromagnetic scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 14, 1968-1979, Mar. 2022.
doi:10.1080/09205071.2022.2051211 Google Scholar
11. Cao, Xinyuan, Mingsheng Chen, Qi Qi, Meng Kong, Jinhua Hu, Liang Zhang, and Xianliang Wu, "Solving electromagnetic scattering problems by underdetermined equations and Krylov subspace," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 6, 541-544, Jun. 2020.
doi:10.1109/LMWC.2020.2988166 Google Scholar
12. Wang, Zhong-Gen, Wen-Yan Nie, and Han Lin, "Characteristic basis functions enhanced compressive sensing for solving the bistatic scattering problems of three-dimensional targets," Microwave and Optical Technology Letters, Vol. 62, No. 10, 3132-3138, Oct. 2020.
doi:10.1002/mop.32432 Google Scholar
13. Brown, Peter N. and Youcef Saad, "Hybrid Krylov methods for nonlinear systems of equations," SIAM Journal on Scientific and Statistical Computing, Vol. 11, No. 3, 450-481, 1990.
doi:10.1137/0911026 Google Scholar
14. Kong, Meng, Ming Sheng Chen, Bo Wu, and Xian Liang Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 198-201, 2017.
doi:10.1109/LAWP.2016.2569605 Google Scholar
15. Wang, Zhonggen, Haoran Yuan, Yufa Sun, Wenyan Nie, and Pan Wang, "Block-based Krylov subspace basis functions for solving bistatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 10, 2561-2565, Oct. 2023.
doi:10.1109/LAWP.2023.3296720 Google Scholar
16. Wang, Zhonggen, Pan Wang, Yufa Sun, and Wenyan Nie, "Fast analysis of bistatic scattering problems for three-dimensional objects using compressive sensing and characteristic modes," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1817-1821, Sep. 2022.
doi:10.1109/LAWP.2022.3181602 Google Scholar
17. Park, Chan-Sun, Yi-Ru Jeong, Ic-Pyo Hong, and Jong-Gwan Yook, "Block size optimization of CBFM for scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5370-5377, Oct. 2018.
doi:10.1109/TAP.2018.2860047 Google Scholar
18. Kong, Meng, Ming Sheng Chen, Xin Yuan Cao, Jia Bing Zhu, Xiao Jing Kuang, Qi Qi, and Xian Liang Wu, "Fast electromagnetic scattering analysis of inhomogeneous dielectric objects over a wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1527-1531, Aug. 2021.
doi:10.1109/LAWP.2021.3089629 Google Scholar
19. Wang, Zhonggen, Pan Wang, Yufa Sun, Wenyan Nie, Juan Wu, and Han Lin, "Fast analysis of wideband scattering problems using universal characteristic mode basis functions," Microwave and Optical Technology Letters, Vol. 64, No. 11, 1937-1943, Jul. 2022.
doi:10.1002/mop.33403 Google Scholar
20. Kumar, N., K. J. Vinoy, and S. Gopalakrishnan, "A reduced order model for electromagnetic scattering using multilevel Krylov subspace splitting," 2015 IEEE International Conference on Computational Electromagnetics, 341-343, Hong Kong, China, Mar. 2015.
doi:10.1109/COMPEM.2015.7052655
21. Konno, Keisuke, Qiang Chen, Kunio Sawaya, and Toshihiro Sezai, "Optimization of block size for CBFM in MoM," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4719-4724, Oct. 2012.
doi:10.1109/TAP.2012.2207330 Google Scholar