Vol. 158
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-06
Energy-Based Adaptive Krylov Subspace Basis Functions Method for Solving Bistatic Scattering Problems
By
Progress In Electromagnetics Research C, Vol. 158, 151-159, 2025
Abstract
To address the convergence inefficiency of the conventional CS-Krylov-block method in solving electromagnetic scattering problems, this paper presents an adaptive Krylov subspace basis function method (AKSBFM) based on spectral energy thresholds. In this method, Krylov subspace basis functions (KSBFs) are first generated within each extended subdomain using localized self-impedance matrices. Singular value decomposition (SVD) is performed on the candidate basis set to evaluate energy contributions, and only the dominant components exceeding a predefined energy threshold are retained. As a result, the number of basis functions per subdomain is automatically adjusted, and a compact, well-conditioned reduced matrix system is constructed. This energy-guided truncation significantly eliminates redundant modes, yielding improved numerical stability and reducing the condition number by up to two orders of magnitude. Numerical experiments demonstrate that, compared with the traditional CS-Krylov-block method, AKSBFM improves computational efficiency while ensuring computational accuracy.
Citation
Jianhao Xiang, Zhonggen Wang, Haoran Yuan, and Wenyan Nie, "Energy-Based Adaptive Krylov Subspace Basis Functions Method for Solving Bistatic Scattering Problems," Progress In Electromagnetics Research C, Vol. 158, 151-159, 2025.
doi:10.2528/PIERC25062903
References

1. Harrington, R. F., "Field computation by moment methods," The Macmillan Comp., Vol. 130, No. 6, 276-280, 1968.

2. Burke, G. J., E. K. Miller, S. Chakrabarti, and K. Demarest, "Using model-based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Transactions on Magnetics, Vol. 25, No. 4, 2807-2809, Jul. 1989.
doi:10.1109/20.34291

3. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

4. Hu, Jun, Zaiping Nie, Xiaofeng Que, and Min Meng, "Fast computation of scattering from 3D complex structures by MLFMA," Journal of Systems Engineering and Electronics, Vol. 19, No. 5, 872-877, Oct. 2008.
doi:10.1016/S1004-4132(08)60166-8

5. Xu, X. M. and Q. H. Liu, "Fast spectral-domain method for acoustic scattering problems," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 48, No. 2, 522-529, Mar. 2001.
doi:10.1109/58.911735

6. Nie, Xiao Chun, Ning Yuan, Le Wei Li, and Yeow Beng Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3526-3533, Nov. 2008.
doi:10.1109/TAP.2008.2005455

7. Zhao, Kezhong, M. N. Vouvakis, and Jin-Fa Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, Nov. 2005.
doi:10.1109/TEMC.2005.857898

8. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

9. Lucente, Eugenio, Agostino Monorchio, and Raj Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, Apr. 2008.
doi:10.1109/TAP.2008.919166

10. Wang, Pan, Zhonggen Wang, Yufa Sun, and Wenyan Nie, "A characteristic mode basis function method for solving wide-angle electromagnetic scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 14, 1968-1979, Mar. 2022.
doi:10.1080/09205071.2022.2051211

11. Cao, Xinyuan, Mingsheng Chen, Qi Qi, Meng Kong, Jinhua Hu, Liang Zhang, and Xianliang Wu, "Solving electromagnetic scattering problems by underdetermined equations and Krylov subspace," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 6, 541-544, Jun. 2020.
doi:10.1109/LMWC.2020.2988166

12. Wang, Zhong-Gen, Wen-Yan Nie, and Han Lin, "Characteristic basis functions enhanced compressive sensing for solving the bistatic scattering problems of three-dimensional targets," Microwave and Optical Technology Letters, Vol. 62, No. 10, 3132-3138, Oct. 2020.
doi:10.1002/mop.32432

13. Brown, Peter N. and Youcef Saad, "Hybrid Krylov methods for nonlinear systems of equations," SIAM Journal on Scientific and Statistical Computing, Vol. 11, No. 3, 450-481, 1990.
doi:10.1137/0911026

14. Kong, Meng, Ming Sheng Chen, Bo Wu, and Xian Liang Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 198-201, 2017.
doi:10.1109/LAWP.2016.2569605

15. Wang, Zhonggen, Haoran Yuan, Yufa Sun, Wenyan Nie, and Pan Wang, "Block-based Krylov subspace basis functions for solving bistatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 10, 2561-2565, Oct. 2023.
doi:10.1109/LAWP.2023.3296720

16. Wang, Zhonggen, Pan Wang, Yufa Sun, and Wenyan Nie, "Fast analysis of bistatic scattering problems for three-dimensional objects using compressive sensing and characteristic modes," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1817-1821, Sep. 2022.
doi:10.1109/LAWP.2022.3181602

17. Park, Chan-Sun, Yi-Ru Jeong, Ic-Pyo Hong, and Jong-Gwan Yook, "Block size optimization of CBFM for scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5370-5377, Oct. 2018.
doi:10.1109/TAP.2018.2860047

18. Kong, Meng, Ming Sheng Chen, Xin Yuan Cao, Jia Bing Zhu, Xiao Jing Kuang, Qi Qi, and Xian Liang Wu, "Fast electromagnetic scattering analysis of inhomogeneous dielectric objects over a wide incident angle," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1527-1531, Aug. 2021.
doi:10.1109/LAWP.2021.3089629

19. Wang, Zhonggen, Pan Wang, Yufa Sun, Wenyan Nie, Juan Wu, and Han Lin, "Fast analysis of wideband scattering problems using universal characteristic mode basis functions," Microwave and Optical Technology Letters, Vol. 64, No. 11, 1937-1943, Jul. 2022.
doi:10.1002/mop.33403

20. Kumar, N., K. J. Vinoy, and S. Gopalakrishnan, "A reduced order model for electromagnetic scattering using multilevel Krylov subspace splitting," 2015 IEEE International Conference on Computational Electromagnetics, 341-343, Hong Kong, China, Mar. 2015.
doi:10.1109/COMPEM.2015.7052655

21. Konno, Keisuke, Qiang Chen, Kunio Sawaya, and Toshihiro Sezai, "Optimization of block size for CBFM in MoM," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4719-4724, Oct. 2012.
doi:10.1109/TAP.2012.2207330