Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-07
A Non-Destructive Technique for Asphalt Compaction Measurement Using Dual-Ring Resonator Sensor
By
Progress In Electromagnetics Research C, Vol. 159, 193-201, 2025
Abstract
Traditional ways of measuring compaction of asphalt, which involve destructive coring, are labor-intensive, time-consuming, and cause permanent damage to the road. This paper presents a non-destructive alternative using a dual-ring resonator sensor (DRRS) integrated with a Vector Network Analyzer (VNA) to evaluate asphalt compaction. The sensor design takes advantage of the electric field that forms between the first and second rings. This field can penetrate the asphalt layer to a depth of up to 50 mm and responds to changes in compaction levels. By putting asphalt samples of different densities on the sensor and measuring scattering parameters (S-parameters), changes in the resonant frequency are shown. These shifts were correlated with asphalt's physical properties through empirical equations. The results showed that the resonant frequency and the reflection coefficient (S11) were -25.5 dB and 1.38 GHz, respectively, at a 75% compaction level. The frequency changed to 1.17 GHz at 100% compaction, and S11 was -17.6 dB. Increasing the compaction of asphalt makes the air gaps in the material smaller, which makes its permittivity higher. Calibration was performed to mitigate the influence of temperature on permittivity measurements, thereby improving compaction. Overall, this method provides a fast, precise, and non-destructive way to check the quality of asphalt, significantly enhancing road construction and maintenance processes.
Citation
Mohammed K. Abbas, Raaed Thaaban Hammed, Ali J. Salim, and Aduwati Sali, "A Non-Destructive Technique for Asphalt Compaction Measurement Using Dual-Ring Resonator Sensor," Progress In Electromagnetics Research C, Vol. 159, 193-201, 2025.
doi:10.2528/PIERC25070401
References

1. Abbas, Mohammed K., Raaed T. Hammed, Ali J. Salim, and Aduwati Sali, "A high-efficiency, indirectly-fed, dual moon-shaped printed antenna for measuring sand gradation," 2024 IEEE 7th International Symposium on Telecommunication Technologies (ISTT), 31-36, Langkawi Island, Malaysia, 2024.
doi:10.1109/ISTT63363.2024.10750705

2. Jilani, Muhammad Taha, Wong Peng Wen, Lee Yen Cheong, Mohd Azman Zakariya, and M. Z. Rehman, "Equivalent circuit modeling of the dielectric loaded microwave biosensor," Radioengineering, Vol. 23, No. 4, 1038-1047, 2014.

3. Yasin, A., F. Rehman, U. Naeem, S. A. Khan, and M. F. Shafique, "Top loaded TM01δ mode cylindrical dielectric resonator for complex permittivity characterization of liquids," Radioengineering, Vol. 25, No. 4, 714-720, 2016.
doi:10.13164/re.2016.0714

4. Tiwari, Nilesh Kumar, Surya Prakash Singh, and M. Jaleel Akhtar, "Novel microstrip-based simplified approach for fast determination of substrate permittivity," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 8, No. 4, 660-669, 2018.
doi:10.1109/tcpmt.2018.2810076

5. Hoegh, Kyle, Roger Roberts, Shongtao Dai, and Eyoab Zegeye Teshale, "Toward core-free pavement compaction evaluation: An innovative method relating asphalt permittivity to density," Geosciences, Vol. 9, No. 7, 280, 2019.
doi:10.3390/geosciences9070280

6. Cao, Qingqing and Imad L. Al-Qadi, "Development of a numerical model to predict the dielectric properties of heterogeneous asphalt concrete," Sensors, Vol. 21, No. 8, 2643, 2021.
doi:10.3390/s21082643

7. Zhang, Chen and Hainian Wang, "A new method for compaction quality evaluation of asphalt mixtures with the intelligent aggregate (IA)," Materials, Vol. 14, No. 9, 2422, 2021.
doi:10.3390/ma14092422

8. Ren, Haisheng, Zhendong Qian, Wei Huang, Wu Bo, Tuanjie Chen, and Haibo Cao, "Evaluation of fracture behavior in asphalt concrete through the combination of semi-circular bending test and digital image correlation technology," Construction and Building Materials, Vol. 451, 138854, 2024.
doi:10.1016/j.conbuildmat.2024.138854

9. Chen, Zhi, "A defect scanning sensor based on a reconfigurable spiral-shaped DGS," Progress In Electromagnetics Research C, Vol. 156, 59-65, 2025.
doi:10.2528/pierc25040702

10. Guattari, Claudia, Davide Ramaccia, Filiberto Bilotti, and Alessandro Toscano, "Permittivity of sub-soil materials retrieved through transmission line model and GPR data," Progress In Electromagnetics Research, Vol. 151, 65-72, 2015.
doi:10.2528/pier15022002

11. Pratticò, Danilo, Filippo Laganà, Giuseppe Oliva, Antonino S. Fiorillo, Salvatore Andrea Pullano, Salvatore Calcagno, Domenico De Carlo, and Fabio La Foresta, "Integration of LSTM and U-net models for monitoring electrical absorption with a system of sensors and electronic circuits," IEEE Transactions on Instrumentation and Measurement, Vol. 74, 1-11, 2025.
doi:10.1109/tim.2025.3573363

12. Versaci, Mario, Filippo Laganà, Laura Manin, and Giovanni Angiulli, "Soft computing and eddy currents to estimate and classify delaminations in biomedical device CFRP plates," Journal of Electrical Engineering, Vol. 76, No. 1, 72-79, 2025.
doi:10.2478/jee-2025-0007

13. Laganà, Filippo, Diego Pellicanò, Mariangela Arruzzo, Danilo Pratticò, Salvatore A. Pullano, and Antonino S. Fiorillo, "FEM-based modelling and AI-enhanced monitoring system for upper limb rehabilitation," Electronics, Vol. 14, No. 11, 2268, 2025.
doi:10.3390/electronics14112268

14. Kaur, Swaranpreet, Surinder Singh, and M. M. Sinha, "Prototype of circular split ring resonator based sensor for estimating soil moisture as a function of soil particle distribution," IEEE Sensors Journal, Vol. 24, No. 19, 29945-29952, 2024.
doi:10.1109/jsen.2024.3428315

15. Al Takach, Ali, Fabien Ndagijimana, Jalal Jomaah, and Mohammed Al-Husseini, "Permittivity extraction of moist soil for GPR applications," 2019 Antennas Design and Measurement International Conference (ADMInC), 48-52, St. Petersburg, Russia, 2019.
doi:10.1109/ADMInC47948.2019.8969454

16. Joshaghani, Alireza and Mehran Shokrabadi, "Ground penetrating radar (GPR) applications in concrete pavements," International Journal of Pavement Engineering, Vol. 23, No. 13, 4504-4531, 2022.
doi:10.1080/10298436.2021.1954182

17. Yu, Xiaohe, Rong Luo, Tingting Huang, Jinteng Wang, and Yu Chen, "Dielectric properties of asphalt pavement materials based on the temperature field," Construction and Building Materials, Vol. 303, 124409, 2021.
doi:10.1016/j.conbuildmat.2021.124409