Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-23
High Selectivity Tri-Coupled Line Bandpass Filter Based on Even- and Odd-Mode Impedance Modeling
By
Progress In Electromagnetics Research C, Vol. 161, 12-26, 2025
Abstract
This research introduces a compact and highly selective tri-coupled line microstrip bandpass filter. The design features a narrow capacitive gap positioned at the midline to disrupt symmetry and facilitate bandpass functionality, as predicted through an even- and odd-mode image impedance framework. The split at the midline generates two modal capacitances (Cgg, Cgb), which influence Re (Zi) and, in conjunction with geometric coupling, determine the passband and roll-off characteristics. Closed-form relationships for microstrip design are utilized to compute line widths and electrical lengths. A systematic parametric analysis demonstrates how the gap and interline spacing impact the fractional bandwidth and the steepness of the transition. Additionally, a substrate survey across dielectric constants ranging from 2 to 12.2 quantifies the trade-off between footprint and selectivity, indicating an area reduction of up to approximately 86% at higher dielectric constants. The selectivity is further enhanced by incorporating auxiliary shunt open stubs that introduce transmission zeros near the edges without necessitating additional resonator sections. A prototype fabricated on an FR-4 substrate operating at 2.4 GHz confirms the theoretical model: the measured |S21| exhibits an insertion loss of approximately 0.58 dB, a fractional bandwidth at 3 dB of approximately 37.3%, a shape factor of 1.3, and two prominent TZs near 1.7 GHz and 3.1 GHz with rejection levels of 48-52 dB. Furthermore, the upper stopband maintains |S21| < -35 dB within the frequency range of 3.10 to 3.20 GHz. These findings substantiate that a single TCL section, featuring a central gap and open stubs, can achieve sharp roll-off and low insertion loss while maintaining minimal layout complexity and enabling straightforward tuning on low-cost printed circuit board materials.
Citation
Moretadha J. Kadhom, "High Selectivity Tri-Coupled Line Bandpass Filter Based on Even- and Odd-Mode Impedance Modeling," Progress In Electromagnetics Research C, Vol. 161, 12-26, 2025.
doi:10.2528/PIERC25070501
References

1. Allen, J. L., "Inhomogeneous coupled-line filters with large mode-velocity ratios," IEEE Transactions on Microwave Theory and Techniques, Vol. 22, No. 12, 1182-1186, Dec. 1974.
doi:10.1109/tmtt.1974.1128461

2. Mongia, R., I. J. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Artech House, Inc., 1999.

3. Amari, S., "Sensitivity analysis of coupled resonator filters," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 47, No. 10, 1017-1022, Oct. 2000.
doi:10.1109/82.877144

4. Kuo, Jen-Tsai, Wei-Hsiu Hsu, and Wei-Ting Huang, "Parallel coupled microstrip filters with suppression of harmonic response," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 10, 383-385, Oct. 2002.
doi:10.1109/lmwc.2002.804559

5. Yang, Ning, Zhi Ning Chen, Yun Yi Wang, and M. Y. W. Chia, "Studies on crossover and broadside-coupled microstrip bandstop filters," Microwave and Optical Technology Letters, Vol. 38, No. 3, 228-231, Aug. 2003.
doi:10.1002/mop.11022

6. Chin, Kuo-Sheng and Jen-Tsai Kuo, "Insertion loss function synthesis of maximally flat parallel-coupled line bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 10, 3161-3168, Oct. 2005.
doi:10.1109/tmtt.2005.855355

7. Lee, Hong-Ming and Chih-Ming Tsai, "Improved coupled-microstrip filter design using effective even-mode and odd-mode characteristic impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2812-2818, Sep. 2005.
doi:10.1109/tmtt.2005.854177

8. Sun, Sheng and Lei Zhu, "Periodically nonuniform coupled microstrip-line filters with harmonic suppression using transmission zero reallocation," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1817-1822, May 2005.
doi:10.1109/tmtt.2005.847079

9. Phromloungsri, R., M. Chongcheawchamnan, and I. D. Robertson, "Inductively compensated parallel coupled microstrip lines and their applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 9, 3571-3582, Sep. 2006.
doi:10.1109/tmtt.2006.881026

10. Chen, Chia-Chung, Jen-Tsai Kuo, Meshon Jiang, and Albert Chin, "Study of parallel coupled-line microstrip filter in broadband," Microwave and Optical Technology Letters, Vol. 48, No. 2, 373-375, Feb. 2006.
doi:10.1002/mop.21353

11. Chin, Kuo-Sheng, Yi-Chyun Chiou, and Jen-Tsai Kuo, "New synthesis of parallel-coupled line bandpass filters with Chebyshev responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 7, 1516-1523, Jul. 2008.
doi:10.1109/tmtt.2008.925572

12. Sun, Sheng, Lei Zhu, and Huei-Hsien Tan, "A compact wideband bandpass filter using transversal resonator and asymmetrical interdigital coupled lines," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 3, 173-175, 2008.
doi:10.1109/lmwc.2008.916780

13. Mohra, Ashraf S., "Coupled microstrip line bandpass filter with harmonic suppression using right-angle triangle grooves," Microwave and Optical Technology Letters, Vol. 51, No. 10, 2313-2318, Oct. 2009.
doi:10.1002/mop.24644

14. Navarro-Cia, Miguel, Joss Miguel Carrasco, Miguel Beruete, and Francisco J. Falcone, "Ultra-wideband metamaterial filter based on electroinductive-wave coupling between microstrips," Progress In Electromagnetics Research Letters, Vol. 12, 141-150, 2009.
doi:10.2528/pierl09102106

15. Zhan, Jin-Song and Jia-Li Wang, "A simple four-order cross-coupled filter with three transmission zeros," Progress In Electromagnetics Research C, Vol. 8, 57-68, 2009.
doi:10.2528/pierc09041107

16. Fathelbab, W. M. and M. J. Almalkawi, "Narrowband filters with tightly coupled resonators," IET Microwaves, Antennas & Propagation, Vol. 4, No. 2, 269-276, Feb. 2010.
doi:10.1049/iet-map.2008.0330

17. Wu, Hung-Wei, Shih-Kun Liu, Min-Hang Weng, and Chia-Ho Hung, "Compact microstrip bandpass filter with multispurious suppression," Progress In Electromagnetics Research, Vol. 107, 21-30, 2010.
doi:10.2528/pier10061601

18. Kang, In-Ho, Kai Wang, and Shang MIng Li, "Modified compact combline filter using planar parallel coupled structure with extended rejection bandwidth," Journal of Navigation and Port Research, Vol. 34, No. 7, 543-552, 2010.
doi:10.5394/kinpr.2010.34.7.543

19. Packiaraj, D., K. J. Vinoy, M. Ramesh, and A. T. Kalghatgi, "Design of a compact wideband bandpass filter," Microwave and Optical Technology Letters, Vol. 52, No. 6, 1387-1389, Jun. 2010.
doi:10.1002/mop.25206

20. Ye, Chang-Sin, Yan-Kuin Su, Min-Hang Weng, Cheng-Yuan Hung, and Ru-Yuan Yang, "Design of the compact parallel-coupled lines wideband bandpass filters using image parameter method," Progress In Electromagnetics Research, Vol. 100, 153-173, 2010.
doi:10.2528/pier09073002

21. Xiao, Ke, Liang Feng Ye, Fei Zhao, Shun-Lian Chai, and Joshua Le-Wei Li, "Coupling matrix decomposition in designs and applications of microwave filters," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011.
doi:10.2528/pier11042603

22. Ho, Min-Hua and Po-Fan Chen, "Suspended substrate stripline bandpass filters with source-load coupling structure using lumped and full-wave mixed approach," Progress In Electromagnetics Research, Vol. 122, 519-535, 2012.
doi:10.2528/pier11102502

23. Omote, Yusuke, Takenori Yasuzumi, Tomoki Uwano, and Osamu Hashimoto, "Ultra-wideband bandpass filter using matching-lines and interdigital filter with close-coupled resonators," IEICE Electronics Express, Vol. 9, No. 7, 660-665, 2012.
doi:10.1587/elex.9.660

24. Xu, Xin and Wen Wu, "Compact microstrip dual-mode dual-band bandpass filters using stubs loaded coupled line," Progress In Electromagnetics Research C, Vol. 41, 137-150, 2013.
doi:10.2528/pierc13052204

25. Wong, Sai Wai, Kai Wang, Zhi-Ning Chen, and Qing-Xin Chu, "Rotationally symmetric coupled-lines bandpass filter with two transmission zeros," Progress In Electromagnetics Research, Vol. 135, 641-656, 2013.
doi:10.2528/pier12112405

26. Li, Cui-Hua and Minquan Li, "Realization of microstrip bandpass filter balun using double-sided parallel-strip line with novel coupling scheme," Progress In Electromagnetics Research Letters, Vol. 43, 191-199, 2013.
doi:10.2528/pierl13092302

27. Packiaraj, D., K. J. Vinoy, M. Ramesh, and Ajit T. Kalghatgi, "Design of cascaded three-conductor coupled line filter," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2431-2436, 2014.
doi:10.1002/mop.28615

28. Kuo, Chi-Jung, Chong-Yi Liou, and Shau-Gang Mao, "Propagation and radiation characteristics of multilayer coupled-line bandpass filters using conductor-backed coplanar transmission lines," Progress In Electromagnetics Research C, Vol. 58, 21-31, 2015.
doi:10.2528/pierc15022703

29. Feng, Wenjie and Wenquan Che, "High-selectivity balanced-filter circuits based on coupled lines with open/shorted loaded stubs," HKIE Transactions, Vol. 23, No. 1, 2-11, 2016.
doi:10.1080/1023697x.2015.1129291

30. Wu, Xiaohu, Yingsong Li, and Xiaoguang Liu, "High-order dual-port quasi-absorptive microstrip coupled-line bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 4, 1462-1475, Apr. 2020.
doi:10.1109/tmtt.2019.2955692

31. Salmani, R., A. Bijari, and S. H. Zahiri, "Design of a microstrip dual-band bandpass filter using novel loaded asymmetric two coupled lines for WLAN applications," Journal of Electrical and Computer Engineering Innovations (JECEI), Vol. 8, No. 2, 255-262, 2020.
doi:10.22061/jecei.2020.7250.376

32. Yoon, Kicheol and Kwanggi Kim, "Compact size of an interdigital band-pass filter with flexible bandwidth and low insertion-loss using a folded spiral and stepped impedance resonant structure," Electronics, Vol. 10, No. 16, 2003, Aug. 2021.
doi:10.3390/electronics10162003

33. Xu, Jiashuai, Kai-Da Xu, Miao Zhang, and Qiang Chen, "Dual-band bandpass filter using two simple coupled microstrip rings," Engineering Reports, Vol. 3, No. 2, e12288, Feb. 2021.
doi:10.1002/eng2.12288

34. Faisal, Muhammad, Sohail Khalid, Mujeeb Ur Rehman, and Muhammad Abdul Rehman, "Synthesis and design of highly selective multi-mode dual-band bandstop filter," IEEE Access, Vol. 9, 43316-43323, 2021.
doi:10.1109/access.2021.3065729

35. Konpang, Jessada and Natchayathorn Wattikornsirikul, "Dual-mode dual-band bandpass filter with high cutoff rejection by using asymmetrical transmission zeros technique," Progress In Electromagnetics Research M, Vol. 100, 225-236, 2021.
doi:10.2528/pierm20102302

36. Wang, Peng, Kaiyue Duan, Minquan Li, Man Zhang, and Baokun Jin, "A novel miniaturized l-band filter with great stopband characteristics using interdigitated coupled lines CRLH-TL structure," Progress In Electromagnetics Research C, Vol. 114, 57-67, 2021.
doi:10.2528/PIERC21051105

37. Weng, Xiao-yu, Kai-Da Xu, Ying-Jiang Guo, An-Xue Zhang, and Qiang Chen, "High-selectivity bandpass filter based on two merged ring resonators," Radioengineering, Vol. 30, No. 3, 504-509, 2021.
doi:10.13164/re.2021.0504

38. Yan, Jun-Mei, Zhi-Peng Xiao, and Liang-Zu Cao, "A simple balanced bandpass filter using loop-type microstrip resonator loaded with shorted/opened stubs.," Progress In Electromagnetics Research Letters, Vol. 107, 141-149, 2022.
doi:10.2528/pierl22080204

39. Gruszczynski, Slawomir and Krzysztof Wincza, "Extraction of parallel-coupled and end-coupled TEM resonator networks from a coupling matrix in the design of coupled-resonator filters," Electronics, Vol. 11, No. 8, 1250, Apr. 2022.
doi:10.3390/electronics11081250

40. Khani, Halah I., Ahmed S. Ezzulddin, and Hussam Al-Saedi, "Design of high-selectivity compact quad-band BPF using multi-coupled line and short stub-SIR resonators," Progress In Electromagnetics Research C, Vol. 122, 215-228, 2022.
doi:10.2528/PIERC22052903

41. Wang, Yun Xiu, Wei Chao Yang, and Min Jiang, "Bandpass filter design with stub-loaded uniform impedance resonator and L-shaped feed structure," Progress In Electromagnetics Research Letters, Vol. 102, 19-26, 2022.
doi:10.2528/pierl21110902

42. Júnior, José Garibaldi Duarte, João Guilherme Domingos Oliveira, Valdemir Praxedes da Silva Neto, and Adaildo Gomes D’Assunção, "A high-selectivity bandpass filter using dual-mode coupling resonator," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 1, 131-140, 2022.
doi:10.1590/2179-10742022v21i1254108

43. Ramkumar, S. and R. Boopathi Rani, "Compact reconfigurable bandpass filter using quarter wavelength stubs for ultra-wideband applications," AEU --- International Journal of Electronics and Communications, Vol. 151, 154219, Jul. 2022.
doi:10.1016/j.aeue.2022.154219

44. Wei, Guangyong, Yunxiu Wang, Jie Liu, and Haiping Li, "A miniaturized UWB bandpass filter employing multi-stub-loaded short-circuited stepped impedance ring resonator," Applied Computational Electromagnetics Society Journal (ACES), Vol. 38, No. 7, 496-502, Jul. 2023.
doi:10.13052/2023.aces.j.380705

45. Basit, Abdul, Amil Daraz, and Guoqiang Zhang, "Implementation of a wideband microwave filter design with dual electromagnetic interference (EMI) mitigation for modern wireless communication systems with low insertion loss and high selectivity," Micromachines, Vol. 14, No. 11, 1986, 2023.
doi:10.3390/mi14111986

46. Shaterian, Zahra and Michal Mrozowski, "Multifunctional bandpass filter/displacement sensor component," IEEE Access, Vol. 11, 27012-27019, 2023.
doi:10.1109/access.2023.3258545

47. Temuli, Hardy Ugau Anak, Khairul Najmy Abdul Rani, Fairul Afzal Ahmad Fuad, Khairil Syahmi Musa, Norfatihah Bahari, Faizah Abu Bakar, Mohd Aminudin Jamlos, and Yusnita Rahayu, "Compact parallel coupled line microstrip bpf design for 5g applications," Journal of Advanced Research in Applied Sciences and Engineering Technology, Vol. 29, No. 2, 38-52, Jan. 2023.
doi:10.37934/araset.29.2.3852

48. Fan, Xiangsuo, Xiaokang Chen, Wenhao Xu, Lingping Feng, Ling Yu, and Haohao Yuan, "A filtering switch made by an improved coupled microstrip line," Applied Sciences, Vol. 13, No. 13, 7886, Jul. 2023.
doi:10.3390/app13137886

49. Phromloungsri, Rave, Mitchai Chongcheawchamnan, and Somchat Sonasang, "Inductively compensated coupled-line resonator and its bandpass filter applications," Przegląd Elektrotechniczny, Vol. 99, 55-59, 2023.
doi:10.15199/48.2023.10.11

50. Alazemi, Abdullah J., "Dual-band and wideband bandpass filters using coupled lines and tri-stepped impedance stubs," Micromachines, Vol. 14, No. 6, 1254, Jun. 2023.
doi:10.3390/mi14061254

51. Vryonides, Photos, Salman Arain, Abdul Quddious, Dimitra Psychogiou, and Symeon Nikolaou, "A new class of high-selectivity bandpass filters with constant bandwidth and 5:1 bandwidth tuning ratio," IEEE Access, Vol. 12, 16489-16497, 2024.
doi:10.1109/access.2024.3358677

52. Chinda, Francis Emmanuel, Mehwish Hanif, Socheatra Soeung, Muhammad Sani Yahya, Ahmed Jamal Abdullah Al-Gburi, Faisal Bashir, Furqan Zahoor, and Cheab Sovuthy, "Design of sub-6 GHz BPF using chained even and odd mode admittance polynomials for 5G C-band applications," Results in Engineering, Vol. 25, 103614, Mar. 2025.
doi:10.1016/j.rineng.2024.103614

53. Wu, Gangxiong, Yang Jin, Wei Zhang, Ruirui Jiang, and Jin Shi, "Dual band bandpass filters with full band reflectionless response and enhanced upper stopband suppression," Scientific Reports, Vol. 15, No. 1, 22520, 2025.
doi:10.1038/s41598-025-06780-6

54. Kahkesh, Sadegh Heydari and Akram Sheikhi, "A microstrip bandpass filter using coupled lines loaded by open stubs," Scientific Reports, Vol. 14, No. 1, 26680, 2024.
doi:10.1038/s41598-024-77818-4

55. Li, Donghao, Kai-Da Xu, and Anxue Zhang, "Single-ended and balanced bandpass filters using multiple pairs of coupled lines and stepped-impedance stubs," IEEE Access, Vol. 8, 13541-13548, 2020.
doi:10.1109/access.2020.2965746

56. Shi, Jin, Jianpeng Ren, Jiancheng Dong, Wei Feng, and Yongjie Yang, "Supercompact balanced wideband bandpass filter using capacitor-loaded three-line coupled structure," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 6, 499-502, 2022.
doi:10.1109/lmwc.2022.3141123

57. Xu, Kai-Da, Sen Lu, Ying-Jiang Guo, and Qiang Chen, "Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures," IEEE Journal of Radio Frequency Identification, Vol. 6, 54-63, 2021.
doi:10.1109/jrfid.2021.3106664

58. Xu, Kai-Da, Xiaoyu Weng, Qiang Chen, and Haijun Fan, "A wideband filtering switch: Its synthesis and design," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 1, 43-53, Jan. 2024.
doi:10.1109/tmtt.2023.3297720

59. Wu, Q. S., Q. Xue, and C. H. Chan, "Bandpass filter using microstrip ring resonators," Electronics Letters, Vol. 39, No. 1, 62-64, Jan. 2003.
doi:/10.1049/el:20030035

60. Rezaiesarlak, Reza, Farrokh Hojjat-Kashani, and Esfandiar Mehrshahi, "Analysis of capasitively coupled microstrip-ring resonator based on spectral domain method," Progress In Electromagnetics Research Letters, Vol. 3, 25-33, 2008.
doi:10.2528/pierl08012504

61. Jung, Dong-Jin and Kai Chang, "Novel capacitive gap-coupled bandpass filter using non-uniform arbitrary image impedance," Progress In Electromagnetics Research C, Vol. 26, 111-121, 2012.
doi:10.2528/pierc11102409

62. Singh, I. P., P. Bhatt, and A. S. Yadav, "Merits of parallel coupled bandpass filter over end coupled bandpass filter in X band," International Journal of Electrical, Electronics and Data Communication, Vol. 3, No. 5, 1-6, 2015.

63. Kuo, Jen-Tsai and Shih-Wei Lai, "New dual-band bandpass filter with wide upper rejection band," Progress In Electromagnetics Research, Vol. 123, 371-384, 2012.
doi:10.2528/pier11112304

64. Xu, Xin and Wen Wu, "Quasi-elliptic wideband bandpass filters using stubs loaded anti-parallel coupled-line," Progress In Electromagnetics Research C, Vol. 42, 13-28, 2013.
doi:10.2528/pierc13061707

65. Cabello-Sánchez, Juan, Vladimir Drakinskiy, Jan Stake, and Helena Rodilla, "Capacitively-coupled resonators for terahertz planar-Goubau-line filters," IEEE Transactions on Terahertz Science and Technology, Vol. 13, No. 1, 58-66, Jan. 2023.
doi:10.1109/tthz.2022.3220599

66. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2012.

67. Priyanka, P. and S. Maheswari, "Design of microstrip coupled line bandpass filter using synthesis technique," International Journal of Engineering Research & Technology (IJERT), Vol. 6, No. 2, 2018.
doi:10.17577/IJERTCON044

68. Liu, Hongmei, Xiaoting Li, Yongquan Guo, Shao-Jun Fang, and Zhongbao Wang, "Design of filtering coupled-line trans-directional coupler with broadband bandpass response," Progress In Electromagnetics Research M, Vol. 100, 163-173, 2021.
doi:10.2528/pierm20110405

69. Balanis, Constantine A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

70. Cui, Jie, Haojie Chang, and Renli Zhang, "High selectivity slot-coupled bandpass filter using discriminating coupling and source-load coupling," Applied Sciences, Vol. 10, No. 19, 6807, 2020.
doi:10.3390/app10196807