Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-22
An Adaptive DTC-SVM Control for Five-Phase Machines Under One Open-Phase Fault
By
Progress In Electromagnetics Research C, Vol. 162, 81-93, 2025
Abstract
This paper presents an adaptive Direct Torque Control with Space Vector Modulation (DTC-SVM) strategy for a five-phase induction machine fed by a two-level inverter, designed to tolerate single open-phase faults. Under such fault conditions, the five-phase inverter generates only 16 voltage vectors distributed across 8 sectors, requiring a reconfiguration of the DTC-SVM control scheme. The proposed method introduces a modified vector selection and sector allocation approach tailored to faulted operation, enabling reliable performance without extensive controller redesign. Simulation studies in MATLAB/Simulink and experimental validation on a 3.5 kW five-phase induction motor confirm the effectiveness of the proposed approach. The results show that the adaptive DTC-SVM reduces torque ripple, maintains stable flux and current waveforms, and preserves fast dynamic response during sudden load changes. In addition, the method remains straightforward to implement, combining the simplicity of DTC with the improved voltage utilization of SVM.
Citation
Mohamed Chafaa Madaoui, Abdelfattah Hoggui, Ali Benachour, Lotfi Kerchich, Meriem Isra Bazzine, Mohand Oulhadj Mahmoudi, and Mohamed Tadjine, "An Adaptive DTC-SVM Control for Five-Phase Machines Under One Open-Phase Fault," Progress In Electromagnetics Research C, Vol. 162, 81-93, 2025.
doi:10.2528/PIERC25070601
References

1. Kim, Namhun and Minhuei Kim, "Modified direct torque control system of five phase induction motor," Journal of Electrical Engineering & Technology, Vol. 4, No. 2, 266-271, 2009.
doi:10.5370/JEET.2009.4.2.266

2. Krishnan, Ramu, Electric Motor Drives: Modeling, Analysis, and Control, Prentice Hall, Upper Saddle River, NJ, USA, 2001.

3. Magdy, Mona, Salama Abu-Zaid, and Mahmoud A. Elwany, "Artificial intelligent techniques based on direct torque control of induction machines," International Journal of Power Electronics and Drive Systems (IJPEDS), Vol. 12, No. 4, 2070-2082, 2021.
doi:10.11591/ijpeds.v12.i4.pp2070-2082

4. Akay, Ali and Paul Lefley, "Torque ripple reduction method in a multiphase PM machine for no-fault and open-circuit fault-tolerant conditions," Energies, Vol. 14, No. 9, 2615, 2021.
doi:10.3390/en14092615

5. Shawier, Abdullah, Ayman Samy Abdel-Khalik, Ragi A. Hamdy, Khaled H. Ahmed, and Shehab Ahmed, "Postfault operation of five-phase induction machine with minimum total losses under single open-phase fault," IEEE Access, Vol. 8, 208696-208706, 2020.
doi:10.1109/access.2020.3036904

6. Barrero, Federico and Mario J. Duran, "Recent advances in the design, modeling, and control of multiphase machines --- Part I," IEEE Transactions on Industrial Electronics, Vol. 63, No. 1, 449-458, 2016.
doi:10.1109/TIE.2015.2447733

7. Levi, Emil, "Multiphase electric machines for variable-speed applications," IEEE Transactions on Industrial Electronics, Vol. 55, No. 5, 1893-1909, 2008.
doi:10.1109/tie.2008.918488

8. Bojoi, R., A. Cavagnino, A. Tenconi, and S. Vaschetto, "Multiphase PM machine for more electric aircraft applications: Prototype for design validation," IECON 2012 --- 38th Annual Conference on IEEE Industrial Electronics Society, 3628-3634, Montreal, QC, Canada, 2012.
doi:10.1109/IECON.2012.6389315

9. Shi, Li-Wei and Bo Zhou, "Comparative study of a fault-tolerant multiphase wound-field doubly salient machine for electrical actuators," Energies, Vol. 8, No. 5, 3640-3660, 2015.
doi:10.3390/en8053640

10. Salehifar, Mehdi, Ramin Salehi Arashloo, Juan Manuel Moreno-Equilaz, Vicent Sala, and Luis Romeral, "Fault detection and fault tolerant operation of a five phase PM motor drive using adaptive model identification approach," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 2, No. 2, 212-223, 2014.
doi:10.1109/jestpe.2013.2293518

11. Bermúdez, M., I. González-Prieto, F. Barrero, M. J. Durán, and X. Kestelyn, "Open-phase fault operation of 5-phase induction motor drives using DTC techniques," IECON 2015 --- 41st Annual Conference of the IEEE Industrial Electronics Society, 595-600, Yokohama, Japan, 2015.
doi:10.1109/IECON.2015.7392164

12. Bermudez, Mario, Ignacio Gonzalez-Prieto, Federico Barrero, Hugo Guzman, Mario J. Duran, and Xavier Kestelyn, "Open-phase fault-tolerant direct torque control technique for five-phase induction motor drives," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, 902-911, 2017.
doi:10.1109/tie.2016.2610941

13. Bermúdez, M., H. Guzmán, I. González-Prieto, F. Barrero, M. J. Durán, and X. Kestelyn, "Comparative study of DTC and RFOC methods for the open-phase fault operation of a 5-phase induction motor drive," IECON 2015 --- 41st Annual Conference of the IEEE Industrial Electronics Society, 2702-2707, Yokohama, Japan, 2015.
doi:10.1109/iecon.2015.7392509

14. Guzmán, Mario Bermúdez, "Nouvelles techniques de commande pour les entraînements électriques polyphasés: Commande en mode instantané (DTC et MPC) dans des situations limites," École Nationale Supérieure des Arts et Métiers, Universidad de Sevilla, Espagne, 2018.

15. Kellner, Jakub, Slavomír Kaščák, and Želmíra Ferková, "Investigation of the properties of a five-phase induction motor in the introduction of new fault-tolerant control," Applied Sciences, Vol. 12, No. 4, 2249, 2022.
doi:10.3390/app12042249

16. Chikondra, Bheemaiah, Utkal Ranjan Muduli, and Ranjan Kumar Behera, "An improved open-phase fault-tolerant DTC technique for five-phase induction motor drive based on virtual vectors assessment," IEEE Transactions on Industrial Electronics, Vol. 68, No. 6, 4598-4609, 2021.
doi:10.1109/tie.2020.2992018

17. Masoud, Mahmoud I., Sherif M. Dabour, Abd El-Wahab Hassan, and Essam M. Rashad, "Control of five-phase induction motor under open-circuit phase fault fed by fault tolerant VSI," 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 327-332, Guarda, Portugal, 2015.
doi:10.1109/DEMPED.2015.7303710

18. Habibullah, Md., Tusar Debanath, and Md. Shahadath Hossain Sabbir, "Fault tolerant control of five-phase induction motor drive," Induction Motors, A. El-Shahat, Ed., Chapter 6, IntechOpen, Rijeka, 2023.
doi:10.5772/intechopen.1001586

19. Guzman, Hugo, Mario J. Duran, Federico Barrero, Blas Bogado, and Sergio Toral, "Speed control of five-phase induction motors with integrated open-phase fault operation using model-based predictive current control techniques," IEEE Transactions on Industrial Electronics, Vol. 61, No. 9, 4474-4484, 2014.
doi:10.1109/tie.2013.2289882

20. Rahman, Khaliqur, Syed Rahman, Mahajan Sagar Bhaskar, Atif Iqbal, Amith Khandakar, Mohd Tariq, and Basem Alamri, "Field-oriented control of five-phase induction motor fed from space vector modulated matrix converter," IEEE Access, Vol. 10, 17996-18007, 2022.
doi:10.1109/access.2022.3142014

21. Dwari, Suman and Leila Parsa, "An optimal control technique for multiphase PM machines under open-circuit faults," IEEE Transactions on Industrial Electronics, Vol. 55, No. 5, 1988-1995, 2008.
doi:10.1109/tie.2008.920643

22. Guzman, Hugo, Mario J. Duran, Federico Barrero, Luca Zarri, Blas Bogado, Ignacio Gonzalez Prieto, and Manuel R. Arahal, "Comparative study of predictive and resonant controllers in fault-tolerant five-phase induction motor drives," IEEE Transactions on Industrial Electronics, Vol. 63, No. 1, 606-617, 2016.
doi:10.1109/tie.2015.2418732

23. Gonzalez-Prieto, Angel, Ignacio Gonzalez-Prieto, Mario J. Duran, and Federico Barrero, "Efficient model predictive control with natural fault-tolerance in asymmetrical six-phase induction machines," Energies, Vol. 12, No. 20, 3989, 2019.
doi:10.3390/en12203989

24. González, O., M. Ayala, C. Romero, J. Rodas, R. Gregor, L. Delorme, I. González-Prieto, M. J. Durán, and M. Rivera, "Comparative assessment of model predictive current control strategies applied to six-phase induction machines," 2020 IEEE International Conference on Industrial Technology (ICIT), 1037-1043, Buenos Aires, Argentina, February 2020.
doi:10.1109/ICIT45562.2020.9067279

25. Zhou, Changpan, Rundong Zhong, Guodong Sun, Dongdong Zhao, Xiaopeng Zhao, and Guoxiu Jing, "Fault-tolerant direct torque control of five-phase permanent magnet synchronous motor under single open-phase fault based on virtual vectors," Energies, Vol. 17, No. 11, 2660, 2024.
doi:10.3390/en17112660

26. Hoggui, Abdelfattah, Ali Benachour, Mohamed Chafaa Madaoui, and Mohand Oulhadj Mahmoudi, "Comparative analysis of direct torque control with space vector modulation (DTC-SVM) and finite control set-model predictive control (FCS-MPC) of five-phase induction motors," Progress In Electromagnetics Research B, Vol. 108, 89-104, 2024.
doi:10.2528/pierb24081702

27. Guzmán, H., M. J. Durán, and F. Barrero, "A comprehensive fault analysis of a five-phase induction motor drive with an open phase," 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), LS5b.3-1-LS5b.3-6, Novi Sad, Serbia, September 2012.
doi:10.1109/EPEPEMC.2012.6397474

28. Bermudez, Mario, Ignacio Gonzalez-Prieto, Federico Barrero, Hugo Guzman, Xavier Kestelyn, and Mario J. Duran, "An experimental assessment of open-phase fault-tolerant virtual-vector-based direct torque control in five-phase induction motor drives," IEEE Transactions on Power Electronics, Vol. 33, No. 3, 2774-2784, 2018.
doi:10.1109/tpel.2017.2711531

29. Lai, Yen-Shin and Jian-Ho Chen, "A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction," IEEE Transactions on Energy Conversion, Vol. 16, No. 3, 220-227, 2001.
doi:10.1109/60.937200