Vol. 134
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-08-13
CAMO-Net: A Channel Attention and Multi-Factor Optimized U-Net for Electromagnetic Inverse Scattering Problems
By
Progress In Electromagnetics Research M, Vol. 134, 79-86, 2025
Abstract
Electromagnetic inverse scattering (EIS) problem is challenging due to its properties of strong nonlinearity and ill-posedness, where existing deep learning approaches often lack systematic network refinement and comprehensive analysis of key factors affecting performance. This work introduces CAMO-Net, a U-Net-based framework for EIS that integrates a channel-attention mechanism and systematically optimizes architectural and training factors to address these limitations. By integrating channel attention into skip connections, adopting a multi-scale channel configuration, and fine-tuning key hyperparameters through controlled experiments, CAMO-Net achieves superior accuracy and robustness. Experimental results demonstrate that it reduces the mean relative error (MRE) by 32.5% and the mean squared error (MSE) by 34.1% compared to the baseline U-Net. Our results demonstrate that joint channel attention and multi-factor optimization provide an effective, reproducible pathway for high-precision EIS imaging, offering new insights for robust reconstruction in EIS problems.
Citation
Tianhao Pan, and Jianfa Liu, "CAMO-Net: A Channel Attention and Multi-Factor Optimized U-Net for Electromagnetic Inverse Scattering Problems," Progress In Electromagnetics Research M, Vol. 134, 79-86, 2025.
doi:10.2528/PIERM25070803
References

1. Cakoni, Fioralba and David Colton, "Combined far-ield operators in electromagnetic inverse scattering theory," Mathematical Methods in the Applied Sciences, Vol. 26, No. 5, 413-429, 2003.
doi:10.1002/mma.360

2. Yin, Tiantian, Zhun Wei, and Xudong Chen, "Non-iterative methods based on singular value decomposition for inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4764-4773, 2020.
doi:10.1109/tap.2020.2969708

3. Radke, Karl Ludger, Benedikt Kamp, Vibhu Adriaenssens, Julia Stabinska, Patrik Gallinnis, Hans-Jörg Wittsack, Gerald Antoch, and Anja Müller-Lutz, "Deep learning-based denoising of CEST MR data: A feasibility study on applying synthetic phantoms in medical imaging," Diagnostics, Vol. 13, No. 21, 3326, 2023.
doi:10.3390/diagnostics13213326

4. Fan, Guangpeng, Feixiang Chen, Danyu Chen, Yan Li, and Yanqi Dong, "A deep learning model for quick and accurate rock recognition with smartphones," Mobile Information Systems, Vol. 2020, No. 1, 7462524, 2020.
doi:10.1155/2020/7462524

5. Wen, Zhigang, Dan Liu, Xiaoqing Liu, Ling Zhong, You Lv, and Yinglin Jia, "Deep learning based smart radar vision system for object recognition," Journal of Ambient Intelligence and Humanized Computing, Vol. 10, No. 3, 829-839, 2019.
doi:10.1007/s12652-018-0853-9

6. Wang, Quanfeng, Alexander H. Paulus, Mei Song Tong, and Thomas F. Eibert, "An indoor localization technique utilizing passive tags and 3-d microwave passive radar imaging," Progress In Electromagnetics Research, Vol. 181, 89-98, 2024.
doi:10.2528/PIER24120903

7. Chen, Xudong, Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, Singapore, 2018.
doi:10.1002/9781119311997

8. Van Den Berg, Peter M. and Ralph E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607, 1997.
doi:10.1088/0266-5611/13/6/013

9. Zhang, Wenji and Ahmad Hoorfar, "Reconstruction of two-dimensional permittivity distribution with distorted rytov iterative method," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1072-1075, 2011.
doi:10.1109/lawp.2011.2169643

10. Devaney, A. J., "Inverse-scattering theory within the Rytov approximation," Optics Letters, Vol. 6, No. 8, 374-376, 1981.
doi:10.1364/ol.6.000374

11. Habashy, Tarek M., Ross W. Groom, and Brian R. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," Journal of Geophysical Research: Solid Earth, Vol. 98, No. B2, 1759-1775, 1993.
doi:10.1029/92jb02324

12. Wang, Yusong, Zheng Zong, Siyuan He, Rencheng Song, and Zhun Wei, "Push the generalization limitation of learning approaches by multidomain weight-sharing for full-wave inverse scattering," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 1-14, 2023.
doi:10.1109/tgrs.2023.3303572

13. Sun, Guanqun, Yizhi Pan, Weikun Kong, Zichang Xu, Jianhua Ma, Teeradaj Racharak, Le-Minh Nguyen, and Junyi Xin, "DA-TransUNet: Integrating spatial and channel dual attention with transformer U-net for medical image segmentation," Frontiers in Bioengineering and Biotechnology, Vol. 12, 1398237, 2024.
doi:10.3389/fbioe.2024.1398237

14. Haberman, Boaz, "Uniqueness in Calderón's problem for conductivities with unbounded gradient," Communications in Mathematical Physics, Vol. 340, No. 2, 639-659, 2015.

15. Guo, Rui, Tianyao Huang, Maokun Li, Haiyang Zhang, and Yonina C. Eldar, "Physics-embedded machine learning for electromagnetic data imaging: Examining three types of data-driven imaging methods," IEEE Signal Processing Magazine, Vol. 40, No. 2, 18-31, 2023.
doi:10.1109/msp.2022.3198805

16. Chen, Xudong, "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, 2010.
doi:10.1109/tgrs.2009.2025122

17. Jin, Lei, Jialei Xie, Baicao Pan, and Guoqing Luo, "Generalized phase retrieval model based on physics-inspired network for holographic metasurface (invited paper)," Progress In Electromagnetics Research, Vol. 178, 103-110, 2023.
doi:10.2528/PIER23100604

18. Wang, Qilong, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo, and Qinghua Hu, "ECA-Net: Efficient channel attention for deep convolutional neural networks," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11531-11539, Seattle, WA, USA, 2020.
doi:10.1109/cvpr42600.2020.01155

19. Hegazy, Ahmed M., Hegazy, Mostafa Alizadeh, Amr Samir, Mohamed Basha, and Safieddin Safavi-Naeini, "Remote material characterization with complex baseband FMCW radar sensors," Progress In Electromagnetics Research, Vol. 177, 107-126, 2023.
doi:10.2528/PIER23032403

20. Hu, Jie, Li Shen, and Gang Sun, "Squeeze-and-excitation networks," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7132-7141, Salt Lake City, UT, USA, 2018.
doi:10.1109/cvpr.2018.00745

21. Xia, Yixin and Siyuan He, "A lightweight deep learning model for full-wave nonlinear inverse scattering problems," Progress In Electromagnetics Research M, Vol. 128, 83-88, 2024.
doi:10.2528/pierm24071701

22. Hochreiter, Sepp and Jürgen Schmidhuber, "Long short-term memory," Neural Computation, Vol. 9, No. 8, 1735-1780, 1997.
doi:10.1162/neco.1997.9.8.1735

23. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the ACM, Vol. 60, No. 6, 84-90, 2017.
doi:10.1145/3065386

24. Liu, Jianfa, Yusong Wang, Lei Jin, Bao Wang, Zheng Zong, Siyuan He, and Zhun Wei, "Exploring scaling laws in large learning models for inverse scattering with spatial-temporal diffusion," IEEE Transactions on Antennas and Propagation, 2025.
doi:10.1109/tap.2025.3569099

25. Wei, Zhun and Xudong Chen, "Physics-inspired convolutional neural network for solving full-wave inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 9, 6138-6148, 2019.
doi:10.1109/tap.2019.2922779