1. Boria, Vicente E. and Benito Gimeno, "Waveguide filters for satellites," IEEE Microwave Magazine, Vol. 8, No. 5, 60-70, 2007.
doi:10.1109/mmm.2007.903649 Google Scholar
2. Hunter, I.C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters-applications and technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 794-805, 2002.
doi:10.1109/22.989963 Google Scholar
3. Almalkawi, M., L. Zhu, and V. Devabhaktuni, "Magnetically tunable substrate integrated waveguide bandpass filters employing ferrites," 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, 1-2, Houston, TX, USA, 2011.
doi:10.1109/irmmw-THz.2011.6105127
4. Laplanche, Etienne, Nicolas Delhote, Aurélien Périgaud, Olivier Tantot, Serge Verdeyme, Stéphane Bila, Damien Pacaud, and Ludovic Carpentier, "Tunable filtering devices in satellite payloads: A review of recent advanced fabrication technologies and designs of tunable cavity filters and multiplexers using mechanical actuation," IEEE Microwave Magazine, Vol. 21, No. 3, 69-83, 2020.
doi:10.1109/mmm.2019.2958706 Google Scholar
5. Kittel, Charles, "On the theory of ferromagnetic resonance absorption," Physical Review, Vol. 73, No. 2, 155, Jan. 1948.
doi:10.1103/physrev.73.155 Google Scholar
6. Yang, Guo-Min, Jing Wu, Jing Lou, Ming Liu, and Nian X. Sun, "Low-loss magnetically tunable bandpass filters with YIG films," IEEE Transactions on Magnetics, Vol. 49, No. 9, 5063-5068, 2013.
doi:10.1109/tmag.2013.2253114 Google Scholar
7. How, H., Ta-Ming Fang, and C. Vittoria, "Magnetic frequency-tunable millimeter-wave filter design using metallic thin films," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 7, 1620-1623, 1995.
doi:10.1109/22.392927 Google Scholar
8. Hunter, I. C. and J. D. Rhodes, "Electronically tunable microwave bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 9, 1354-1360, 1982.
doi:10.1109/tmtt.1982.1131260 Google Scholar
9. Pelliccia, Luca, Fabrizio Cacciamani, Paola Farinelli, and Roberto Sorrentino, "High-Q tunable waveguide filters using ohmic RF MEMS switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3381-3390, 2015.
doi:10.1109/TMTT.2015.2459689 Google Scholar
10. Shu, Y.-H., J. A. Navarro, and K. Chang, "Electronically switchable and tunable coplanar waveguide-slotline band-pass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 548-554, 1991.
doi:10.1109/22.75299 Google Scholar
11. Yan, Winter Dong and Raafat R. Mansour, "Tunable dielectric resonator bandpass filter with embedded MEMS tuning elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 1, 154-160, 2007.
doi:10.1109/tmtt.2006.888582 Google Scholar
12. Yun, Tae-Yeoul and Kai Chang, "Piezoelectric-transducer-controlled tunable microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 5, 1303-1310, 2002.
doi:10.1109/22.999143 Google Scholar
13. Mansour, Raafat R., Gowrish Basavarajappa, and Seyyed Mojtaba Pourjaafari, "High-Q tunable bandpass filters with a wide tuning range using a minimum number of tuning elements," IEEE Microwave Magazine, 2-17, 2025.
doi:10.1109/mmm.2025.3572869 Google Scholar
14. Widaa, Abdulrahman, Chad Bartlett, and Michael Höft, "Tunable coaxial bandpass filters based on inset resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 1, 285-295, 2023.
doi:10.1109/tmtt.2022.3222321 Google Scholar
15. Widaa, Abdulrahman and Michael Höft, "Widely tunable TM-mode dielectric filters with constant absolute bandwidth using re-entrant caps," IEEE Journal of Microwaves, Vol. 3, No. 2, 706-714, 2023.
doi:10.1109/jmw.2023.3242689 Google Scholar
16. Gowrish, B. and Raafat R. Mansour, "A tunable quarter-wavelength coaxial filter with constant absolute bandwidth using a single tuning element," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 6, 658-661, 2021.
doi:10.1109/lmwc.2021.3064381 Google Scholar
17. Zhou, Xubin and Junjie Huo, "Design of tunable coaxial bandpass filter based on embedded stepped impedance resonators," IEEE Access, Vol. 11, 58947-58952, 2023.
doi:10.1109/access.2023.3284462 Google Scholar
18. Sichak, W. and H. Augenblick, "Tunable waveguide filters," Proceedings of the IRE, Vol. 39, No. 9, 1055-1059, 1951.
doi:10.1109/jrproc.1951.273747 Google Scholar
19. Basavarajappa, Gowrish and Raafat R. Mansour, "Design methodology of a tunable waveguide filter with a constant absolute bandwidth using a single tuning element," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5632-5639, 2018.
doi:10.1109/tmtt.2018.2873383 Google Scholar
20. Macchiarella, Giuseppe, Luciano Accatino, and Andrea Malagoli, "Design of Ka-band tunable filters in rectangular waveguide with constant bandwidth," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 622-624, Hong Kong, Hong Kong, 2020.
doi:10.1109/APMC47863.2020.9331631
21. Ossorio, Javier, Vicente E. Boria, and Marco Guglielmi, "Dielectric tuning screws for microwave filters applications," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 1253-1256, Philadelphia, PA, USA, 2018.
doi:10.1109/MWSYM.2018.8439857
22. De Faoite, Daithí, David J. Browne, Franklin R. Chang-Díaz, and Kenneth T. Stanton, "A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics," Journal of Materials Science, Vol. 47, No. 10, 4211-4235, 2012.
doi:10.1007/s10853-011-6140-1 Google Scholar
23. Vallerotonda, Paolo, Fabrizio Cacciamani, Luca Pelliccia, Cristiano Tomassoni, and Vittorio Tornielli di Crestvolant, "High-power ka-band bandpass filter based on movable dielectric-loaded TE01δ mode resonators," 2022 52nd European Microwave Conference (EuMC), 111-114, Milan, Italy, 2022.
doi:10.23919/EuMC54642.2022.9924500
24. Matthaei, L., G. L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech Microwave Library, 1964.
25. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.
26. Zhang, Songbai and Lei Zhu, "General synthesis method for symmetrical even-order Chebyshev bandpass filter," 2012 Asia Pacific Microwave Conference Proceedings, 667-669, Kaohsiung, Taiwan, 2012.
doi:10.1109/APMC.2012.6421697
27. Yang, Jinping, Lan Cui, Chunhong Chen, and Wen Wu, "Synthesis of symmetrical even-order Chebyshev filters," 2008 Asia-Pacific Microwave Conference, 1-4, Hong Kong, China, 2008.
doi:10.1109/APMC.2008.4958176
28. Collin, Robert E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.
doi:10.1109/9780470544662
29. Rizzi, Peter A., Microwave Engineering: Passive Circuits, Vol. 449, Prentice Hall New Jersey, 1988.
30. Kyocera Global, "High-purity alumina (AO479U) for microwave applications," [Online]. Available: https://global.kyocera.com/prdct/fc/technologies/013.html, 2025.
31. Jiménez-Sáez, Alejandro, Martin Schüßler, Christopher Krause, Damian Pandel, Kamil Rezer, Gerd Vom Bögel, Niels Benson, and Rolf Jakoby, "3D printed alumina for low-loss millimeter wave components," IEEE Access, Vol. 7, 40719-40724, 2019.
doi:10.1109/access.2019.2906034 Google Scholar
32. Guarnera, Davide, Giorgio S. Mauro, Santi Concetto Pavone, Tommaso Isernia, and Gino Sorbello, "Multiphysics analysis of thermal deformation effects on a waveguide bandpass filter," IEEE Access, Vol. 13, 71447-71455, 2025.
doi:10.1109/access.2025.3561350 Google Scholar