Vol. 164
Latest Volume
All Volumes
PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-24
Design of a High-Selectivity C-Band Tunable Filter by Dielectric Movable Elements for SATCOM Applications
By
Progress In Electromagnetics Research C, Vol. 164, 1-7, 2026
Abstract
In this paper, the design of a mechanically tunable band-pass filter in waveguide technology operating in the C-band tunability range [4.4-5] GHz, for satellite communications (SATCOM), is presented. The resonance frequency tunability has been obtained by mechanically inserting movable dielectric cylinders within the waveguide filter. The impedance matching has been achieved by using two movable dielectric ridges, working as quarter-wave transformers. They have been placed at input and output filter ports and can move jointly with the dielectric tuning elements. Filter design has been carried out by adopting a suitable theoretical model, whereas the optimization has been achieved by numerical simulations. The proposed design approach provides key advantages in terms of simplicity, design effectiveness and reproducibility, rendering it particularly suitable for industrial applications. A prototype of high-selectivity tunable filter has been fabricated and characterized within the whole tunability range. The measurements show excellent agreement with simulated results.
Citation
Davide Guarnera, Santi Concetto Pavone, Tommaso Isernia, and Gino Sorbello, "Design of a High-Selectivity C-Band Tunable Filter by Dielectric Movable Elements for SATCOM Applications," Progress In Electromagnetics Research C, Vol. 164, 1-7, 2026.
doi:10.2528/PIERC25071004
References

1. Boria, Vicente E. and Benito Gimeno, "Waveguide filters for satellites," IEEE Microwave Magazine, Vol. 8, No. 5, 60-70, 2007.
doi:10.1109/mmm.2007.903649

2. Hunter, I.C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters-applications and technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 794-805, 2002.
doi:10.1109/22.989963

3. Almalkawi, M., L. Zhu, and V. Devabhaktuni, "Magnetically tunable substrate integrated waveguide bandpass filters employing ferrites," 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, 1-2, Houston, TX, USA, 2011.
doi:10.1109/irmmw-THz.2011.6105127

4. Laplanche, Etienne, Nicolas Delhote, Aurélien Périgaud, Olivier Tantot, Serge Verdeyme, Stéphane Bila, Damien Pacaud, and Ludovic Carpentier, "Tunable filtering devices in satellite payloads: A review of recent advanced fabrication technologies and designs of tunable cavity filters and multiplexers using mechanical actuation," IEEE Microwave Magazine, Vol. 21, No. 3, 69-83, 2020.
doi:10.1109/mmm.2019.2958706

5. Kittel, Charles, "On the theory of ferromagnetic resonance absorption," Physical Review, Vol. 73, No. 2, 155, Jan. 1948.
doi:10.1103/physrev.73.155

6. Yang, Guo-Min, Jing Wu, Jing Lou, Ming Liu, and Nian X. Sun, "Low-loss magnetically tunable bandpass filters with YIG films," IEEE Transactions on Magnetics, Vol. 49, No. 9, 5063-5068, 2013.
doi:10.1109/tmag.2013.2253114

7. How, H., Ta-Ming Fang, and C. Vittoria, "Magnetic frequency-tunable millimeter-wave filter design using metallic thin films," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 7, 1620-1623, 1995.
doi:10.1109/22.392927

8. Hunter, I. C. and J. D. Rhodes, "Electronically tunable microwave bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 9, 1354-1360, 1982.
doi:10.1109/tmtt.1982.1131260

9. Pelliccia, Luca, Fabrizio Cacciamani, Paola Farinelli, and Roberto Sorrentino, "High-Q tunable waveguide filters using ohmic RF MEMS switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3381-3390, 2015.
doi:10.1109/TMTT.2015.2459689

10. Shu, Y.-H., J. A. Navarro, and K. Chang, "Electronically switchable and tunable coplanar waveguide-slotline band-pass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 548-554, 1991.
doi:10.1109/22.75299

11. Yan, Winter Dong and Raafat R. Mansour, "Tunable dielectric resonator bandpass filter with embedded MEMS tuning elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 1, 154-160, 2007.
doi:10.1109/tmtt.2006.888582

12. Yun, Tae-Yeoul and Kai Chang, "Piezoelectric-transducer-controlled tunable microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 5, 1303-1310, 2002.
doi:10.1109/22.999143

13. Mansour, Raafat R., Gowrish Basavarajappa, and Seyyed Mojtaba Pourjaafari, "High-Q tunable bandpass filters with a wide tuning range using a minimum number of tuning elements," IEEE Microwave Magazine, 2-17, 2025.
doi:10.1109/mmm.2025.3572869

14. Widaa, Abdulrahman, Chad Bartlett, and Michael Höft, "Tunable coaxial bandpass filters based on inset resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 1, 285-295, 2023.
doi:10.1109/tmtt.2022.3222321

15. Widaa, Abdulrahman and Michael Höft, "Widely tunable TM-mode dielectric filters with constant absolute bandwidth using re-entrant caps," IEEE Journal of Microwaves, Vol. 3, No. 2, 706-714, 2023.
doi:10.1109/jmw.2023.3242689

16. Gowrish, B. and Raafat R. Mansour, "A tunable quarter-wavelength coaxial filter with constant absolute bandwidth using a single tuning element," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 6, 658-661, 2021.
doi:10.1109/lmwc.2021.3064381

17. Zhou, Xubin and Junjie Huo, "Design of tunable coaxial bandpass filter based on embedded stepped impedance resonators," IEEE Access, Vol. 11, 58947-58952, 2023.
doi:10.1109/access.2023.3284462

18. Sichak, W. and H. Augenblick, "Tunable waveguide filters," Proceedings of the IRE, Vol. 39, No. 9, 1055-1059, 1951.
doi:10.1109/jrproc.1951.273747

19. Basavarajappa, Gowrish and Raafat R. Mansour, "Design methodology of a tunable waveguide filter with a constant absolute bandwidth using a single tuning element," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 12, 5632-5639, 2018.
doi:10.1109/tmtt.2018.2873383

20. Macchiarella, Giuseppe, Luciano Accatino, and Andrea Malagoli, "Design of Ka-band tunable filters in rectangular waveguide with constant bandwidth," 2020 IEEE Asia-Pacific Microwave Conference (APMC), 622-624, Hong Kong, Hong Kong, 2020.
doi:10.1109/APMC47863.2020.9331631

21. Ossorio, Javier, Vicente E. Boria, and Marco Guglielmi, "Dielectric tuning screws for microwave filters applications," 2018 IEEE/MTT-S International Microwave Symposium --- IMS, 1253-1256, Philadelphia, PA, USA, 2018.
doi:10.1109/MWSYM.2018.8439857

22. De Faoite, Daithí, David J. Browne, Franklin R. Chang-Díaz, and Kenneth T. Stanton, "A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics," Journal of Materials Science, Vol. 47, No. 10, 4211-4235, 2012.
doi:10.1007/s10853-011-6140-1

23. Vallerotonda, Paolo, Fabrizio Cacciamani, Luca Pelliccia, Cristiano Tomassoni, and Vittorio Tornielli di Crestvolant, "High-power ka-band bandpass filter based on movable dielectric-loaded TE01δ mode resonators," 2022 52nd European Microwave Conference (EuMC), 111-114, Milan, Italy, 2022.
doi:10.23919/EuMC54642.2022.9924500

24. Matthaei, L., G. L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech Microwave Library, 1964.

25. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.

26. Zhang, Songbai and Lei Zhu, "General synthesis method for symmetrical even-order Chebyshev bandpass filter," 2012 Asia Pacific Microwave Conference Proceedings, 667-669, Kaohsiung, Taiwan, 2012.
doi:10.1109/APMC.2012.6421697

27. Yang, Jinping, Lan Cui, Chunhong Chen, and Wen Wu, "Synthesis of symmetrical even-order Chebyshev filters," 2008 Asia-Pacific Microwave Conference, 1-4, Hong Kong, China, 2008.
doi:10.1109/APMC.2008.4958176

28. Collin, Robert E., Foundations for Microwave Engineering, John Wiley & Sons, 2007.
doi:10.1109/9780470544662

29. Rizzi, Peter A., Microwave Engineering: Passive Circuits, Vol. 449, Prentice Hall New Jersey, 1988.

30. Kyocera Global, "High-purity alumina (AO479U) for microwave applications," [Online]. Available: https://global.kyocera.com/prdct/fc/technologies/013.html, 2025.

31. Jiménez-Sáez, Alejandro, Martin Schüßler, Christopher Krause, Damian Pandel, Kamil Rezer, Gerd Vom Bögel, Niels Benson, and Rolf Jakoby, "3D printed alumina for low-loss millimeter wave components," IEEE Access, Vol. 7, 40719-40724, 2019.
doi:10.1109/access.2019.2906034

32. Guarnera, Davide, Giorgio S. Mauro, Santi Concetto Pavone, Tommaso Isernia, and Gino Sorbello, "Multiphysics analysis of thermal deformation effects on a waveguide bandpass filter," IEEE Access, Vol. 13, 71447-71455, 2025.
doi:10.1109/access.2025.3561350