Vol. 164
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-01-15
A Compact Time-Domain Reflectometry (TDR)-Based Microwave Nondestructive Testing Circuit
By
Progress In Electromagnetics Research C, Vol. 164, 263-270, 2026
Abstract
This paper proposes a proof-of-concept circuit of a time-domain reflectometry (TDR)-based non-destructive testing (NDT) circuit. The circuit consists of a broadband six-port reflectometer with an end-fire antenna probe. The broadband operation is achieved by a reduced-size six port reflectometer that uses a special algorithm to extend the frequency of operation beyond the limits between which a normal reflectometer usually used. In addition, a highly-directive antenna probe is proposed to provide a near-constant gain across the bandwidth of operation. By operating the circuit within the frequency range 2.5-7 GHz, it is used to detect gaps of various widths between the back of a polystyrene sample and a metallic plate. Results show clear indication of the gaps' existence in addition to a shift that is associated with the gap width. The proposed circuit proves the possibility of implementing the TDR-based microwave NDT system using a low-cost and compact circuit without the need for bulky and expensive vector network analyzers. This paves the road towards utilizing this technology in real-life scenarios.
Citation
Nadine Adnan Shaaban, and Ghassan Nihad Jawad, "A Compact Time-Domain Reflectometry (TDR)-Based Microwave Nondestructive Testing Circuit," Progress In Electromagnetics Research C, Vol. 164, 263-270, 2026.
doi:10.2528/PIERC25071008
References

1. Akbar, Muhammad Firdaus, Nawaf H. M. M. Shrifan, Ghassan N. Jawad, and Nor Ashidi Mat Isa, "Assessment of delamination under insulation using ridge waveguide," IEEE Access, Vol. 10, 36177-36187, 2022.
doi:10.1109/access.2022.3163308        Google Scholar

2. Abdullah , Ahmed Assim and Hanifi Çanakcı, "Experimental investigation of crack initiation and growth in concrete slabs placed directly on clayey soil," Journal of Engineering, Vol. 28, No. 9, 1-17, Sep. 2022.
doi:10.31026/j.eng.2022.09.07        Google Scholar

3. Al-Mosawe, Mosa, Yousef Al-Shakarchi, and A. A'amal, "Influence of defect in the concrete piles using non-destructive testing," Journal of Engineering, Vol. 12, No. 03, 1804-1816, Sep. 2006.
doi:10.31026/j.eng.2006.03.14        Google Scholar

4. Hadi, Nabil Hassan and Basim Jameel Hamood, "Vibration analysis of a composite plate with delamination," Journal of Engineering, Vol. 21, No. 02, 144-164, Feb. 2015.
doi:10.31026/j.eng.2015.02.09        Google Scholar

5. Gao, Yunlai, Gui Yun Tian, Ping Wang, and Haitao Wang, "Emissivity correction of eddy current pulsed thermography for rail inspection," 2016 IEEE Far East NDT New Technology & Application Forum (FENDT), 108-112, Nanchang, China, 2016.
doi:10.1109/FENDT.2016.7992006

6. Ghasr, Mohammad Tayeb, Matthew J. Horst, Matthew R. Dvorsky, and Reza Zoughi, "Wideband microwave camera for real-time 3-D imaging," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 1, 258-268, Jan. 2017.
doi:10.1109/tap.2016.2630598        Google Scholar

7. Siang, Teng Wei, Muhammad Firdaus Akbar, Ghassan Nihad Jawad, Tan Shin Yee, and Mohd Ilyas Sobirin Mohd Sazali, "A past, present, and prospective review on microwave nondestructive evaluation of composite coatings," Coatings, Vol. 11, No. 8, 913, Jul. 2021.
doi:10.3390/coatings11080913        Google Scholar

8. Jawad, Ghassan Nihad and Muhammad Firdaus Akbar, "IFFT-based microwave non-destructive testing for delamination detection and thickness estimation," IEEE Access, Vol. 9, 98561-98572, 2021.
doi:10.1109/access.2021.3095105        Google Scholar

9. Shrifan, Nawaf H. M. M., Ghassan Nihad Jawad, Nor Ashidi Mat Isa, and Muhammad Firdaus Akbar, "Microwave nondestructive testing for defect detection in composites based on K-means clustering algorithm," IEEE Access, Vol. 9, 4820-4828, 2021.
doi:10.1109/access.2020.3048147        Google Scholar

10. Akbar, Muhammad Firdaus, Ghassan Nihad Jawad, Laith Danoon Rashid, and Robin Sloan, "Nondestructive evaluation of coatings delamination using microwave time domain reflectometry technique," IEEE Access, Vol. 8, 114833-114841, 2020.
doi:10.1109/access.2020.3003829        Google Scholar

11. Brinker, Katelyn, Matthew Dvorsky, Mohammad Tayeb Al Qaseer, and Reza Zoughi, "Review of advances in microwave and millimetre-wave NDT&E: Principles and applications," Philosophical Transactions of the Royal Society A, Vol. 378, No. 2182, 20190585, 2020.
doi:10.1098/rsta.2019.0585        Google Scholar

12. Xie, Yi, Xiaoqing Yang, Piqiang Su, Yi He, and Yunfeng Qiu, "A microwave time domain reflectometry technique combining the wavelet decomposition analysis and artificial neural network for detection of defects in dielectric structures," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-11, 2022.
doi:10.1109/tim.2022.3147865        Google Scholar

13. Cataldo, Andrea, Egidio De Benedetto, Raissa Schiavoni, Giuseppina Monti, Annarita Tedesco, Antonio Masciullo, Emanuele Piuzzi, and Luciano Tarricone, "Portable microwave reflectometry system for skin sensing," IEEE Transactions on Electromagnetic Compatibility, Vol. 71, 1-8, 2022.
doi:10.1109/TIM.2022.3154804        Google Scholar

14. Fang, Yang, Xihan Yang, Hong-En Chen, Zhenmao Chen, Ruonan Wang, Yong Li, and Shejuan Xie, "Non-destructive quantitative evaluation of delamination depth and thickness in GFRP using microwave reflectometry," NDT & E International, Vol. 144, 103065, 2024.
doi:10.1016/j.ndteint.2024.103065        Google Scholar

15. Arab, Homa, Steven Dufour, Emilia Moldovan, Cevdet Akyel, and Serioja Ovidiu Tatu, "Accurate and robust CW-LFM radar sensor: Transceiver front-end design and implementation," IEEE Sensors Journal, Vol. 19, No. 5, 1943-1950, Mar. 2019.
doi:10.1109/jsen.2018.2885048        Google Scholar

16. Ghasr, Mohammad Tayeb, David Pommerenke, Joseph T. Case, Andrew McClanahan, Aman Aflaki-Beni, Mohamed Abou-Khousa, Sergey Kharkovsky, Kyle Guinn, Francesco De Paulis, and Reza Zoughi, "Rapid rotary scanner and portable coherent wideband Q-band transceiver for high-resolution millimeter-wave imaging applications," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 1, 186-197, 2010.
doi:10.1109/tim.2010.2049216        Google Scholar

17. Engen, G. F., "The six-port reflectometer: An alternative network analyzer," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, No. 12, 1075-1080, 1977.
doi:10.1109/tmtt.1977.1129277        Google Scholar

18. Engen, Glenn F. and Cletus A. Hoer, "Application of an arbitrary 6-port junction to power-measurement problems," IEEE Transactions on Instrumentation and Measurement, Vol. 21, No. 4, 470-474, 1972.
doi:10.1109/tim.1972.4314069        Google Scholar

19. Hoer, Cletus A., "Using six-port and eight-port junctions to measure active and passive circuit parameters," U.S. Department of Commerce, National Bureau of Standards, 1975.
doi:10.6028/nbs.tn.673

20. Staszek, Kamil, Sarah Linz, Fabian Lurz, Sebastian Mann, Robert Weigel, and Alexander Koelpin, "Improved calibration procedure for six-port based precise displacement measurements," 2016 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), 60-63, Austin, TX, USA, Mar. 2016.
doi:10.1109/wisnet.2016.7444322

21. Ghosh, Debapratim and Girish Kumar, "Six-port reflectometer using edge-coupled microstrip couplers," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 245-247, Mar. 2017.
doi:10.1109/lmwc.2017.2661708        Google Scholar

22. Seman, Norhudah and Marek E. Bialkowski, "Design of a UWB 6-port reflectometer formed by microstrip-slot couplers for use in a microwave breast cancer detection system," 2007 IEEE Antennas and Propagation Society International Symposium, 245-248, Honolulu, HI, USA, 2007.
doi:10.1109/aps.2007.4395476

23. Feng, Penghao, Xinyue Song, Binke Huang, Juan Chen, and Sen Yan, "An accurate calibration and calculation method of six-port circuit for microfluidic sensing application," Sensors and Actuators A: Physical, Vol. 357, 114387, 2023.
doi:10.1016/j.sna.2023.114387        Google Scholar

24. Lee, M.-C., "A 20-GHz on-chip six-port reflectometer using simple lumped passive devices and bipolar junction transistors," International Journal of Engineering and Technology Innovation, Vol. 3, 01-11, 2024.
doi:10.46604/emsi.2024.13126        Google Scholar

25. Veliz, Gerardo Hernández, Carlos Alberto Bonilla Barragán, and Felipe Alejandro Uribe Campos, "An efficient 2.4 GHz six-port circuit design to implement a reflectometer," IEEE Latin America Transactions, Vol. 21, No. 7, 858-865, Jul. 2023.
doi:10.1109/tla.2023.10244184        Google Scholar

26. Veliz, Gerardo Hernandez, Felipe Alejandro Uribe Campos, and Carlos Alberto Bonilla Barragán, "An alternative design of a compact and portable six-port reflectometer for 2.4 GHz reflection coefficient measurements," IEEE Latin America Transactions, Vol. 23, No. 3, 251-257, 2025.
doi:10.1109/tla.2025.10879194        Google Scholar

27. Shaaban, Nadine Adnan and Ghassan Nihad Jawad, "Design and implementation of a microstrip six-port reflectometer (SPR) with enhanced bandwidth," Journal of Engineering, Vol. 30, No. 07, 125-143, Jul. 2024.
doi:10.31026/j.eng.2024.07.08        Google Scholar

28. Mishra, B., A. Rahman, S. Shaw, M. Mohd, S. Mondal, and P. P. Sarkar, "Design of an ultra-wideband Wilkinson power divider," 2014 First International Conference on Automation, Control, Energy and Systems (ACES), 1-4, Adisaptagram, India, 2014.
doi:10.1109/ACES.2014.6807987

29. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.

30. Ghannouchi, Fadhel M. and Abbas Mohammadi, The Six-port Technique with Microwave and Wireless Applications, Artech House, 2009.

31. Sekhar, Manepalli and Nelaturi Suman, "CPW fed super-wideband antenna for microwave imaging application," Progress In Electromagnetics Research C, Vol. 130, 201-212, 2023.
doi:10.2528/pierc22122707        Google Scholar

32. Garg, Rahul Kumar and Sarthak Singhal, "Hexagon-shaped antenna with DGS for band-notched ultra-wideband and V2X applications," Telecommunications and Radio Engineering, Vol. 83, No. 6, 67-77, 2024.
doi:10.1615/telecomradeng.2024052418        Google Scholar