Vol. 136
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-11-03
Selective Signal Transmission and Crosstalk Suppression Based on Double-Layer RFID Tags
By
Progress In Electromagnetics Research M, Vol. 136, 13-21, 2025
Abstract
This paper presents a passive, structure-based approach for selective signal transmission and crosstalk suppression in dense radio frequency identification (RFID) tag environments. The proposed method employs a mechanically reconfigurable double-layer tag design based on the mirror-antenna principle, which enables dynamic switching between transmission and shielding modes by adjusting the interlayer spacing. Simulation results demonstrate pronounced differences in the reflection characteristics and radiation intensity of the tag under the two operating modes at 915 MHz. Experimental validation further confirms the effectiveness of the system in mitigating interference and ensuring reliable tag identification in multi-tag scenarios. The design is compact, energy-efficient, and cost-effective, supporting scalable applications in smart retail and automated inventory management.
Citation
Peiying Lin, Jiangtao Huangfu, Xixi Wang, Dana Oprisan, and Yanbin Yang, "Selective Signal Transmission and Crosstalk Suppression Based on Double-Layer RFID Tags," Progress In Electromagnetics Research M, Vol. 136, 13-21, 2025.
doi:10.2528/PIERM25071106
References

1. Tebaldi, Letizia, Davide Reverberi, Giovanni Romagnoli, Eleonora Bottani, and Antonio Rizzi, "RFID technology in retail 4.0: State-of-the-art in the fast-moving consumer goods field," International Journal of RF Technologies, Vol. 13, No. 2, 105-133, 2023.
doi:10.3233/rft-221505

2. Wickramasinghe, Shyama, Jeevani Jayasinghe, Gulam Nabi Alsath Mohammed, Melaka Senadeera, and Malathi Kanagasabai, "A compact energy harvesting RFID tag for smart traffic law enforcement systems," Progress In Electromagnetics Research C, Vol. 135, 181-193, 2023.
doi:10.2528/pierc23051802

3. Khan, Shahed I., Biplob R. Ray, and Nemai C. Karmakar, "RFID localization in construction with IoT and security integration," Automation in Construction, Vol. 159, 105249, 2024.
doi:10.1016/j.autcon.2023.105249

4. Parthiban, Prabakar, "Embeddable miniature UHF RFID near-field antenna for healthcare applications," Progress In Electromagnetics Research M, Vol. 87, 199-207, 2019.
doi:10.2528/pierm19091111

5. Wang, Ye, "Leveraging and refining image recognition technology for intelligent logistics sorting systems," Traitement du Signal, Vol. 40, No. 3, 1235-1242, 2023.
doi:10.18280/ts.400341

6. Luo, Yifei, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, et al. "Technology roadmap for flexible sensors," ACS Nano, Vol. 17, No. 6, 5211-5295, 2023.
doi:10.1021/acsnano.2c12606

7. Musa, Ahmed and Al-Amin Abba Dabo, "A review of RFID in supply chain management: 2000-2015," Global Journal of Flexible Systems Management, Vol. 17, No. 2, 189-228, 2016.
doi:10.1007/s40171-016-0136-2

8. Roggeveen, A. L. and R. Sethuraman, "Customer-interfacing retail technologies in 2020 & beyond: An integrative framework and research directions," Journal of Retailing, Vol. 96, No. 3, 299-309, 2020.
doi:https://doi.org/10.1016/j.jretai.2020.08.001

9. Liu, Xin, Jeremy Shannon, Howard Voun, Martijn Truijens, Hung-Lin Chi, and Xiangyu Wang, "Spatial and temporal analysis on the distribution of active radio-frequency identification (RFID) tracking accuracy with the kriging method," Sensors, Vol. 14, No. 11, 20451-20467, 2014.
doi:10.3390/s141120451

10. Wang, Shuyu, Zhenyu Liu, Yongjian Zhang, and Yue Li, "Active-passive reconfigurable antenna covering 70-7200 MHz bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 9, 7323-7328, 2024.
doi:10.1109/tap.2024.3426348

11. Ferdous, R. M., Ahmed Wasif Reza, and Muhammad Faisal Siddiqui, "Renewable energy harvesting for wireless sensors using passive RFID tag technology: A review," Renewable and Sustainable Energy Reviews, Vol. 58, 1114-1128, 2016.
doi:10.1016/j.rser.2015.12.332

12. Zhu, Lei and Tak-Shing Peter Yum, "Optimal framed aloha based anti-collision algorithms for RFID systems," IEEE Transactions on Communications, Vol. 58, No. 12, 3583-3592, 2010.
doi:10.1109/tcomm.2011.102910.090390

13. Klair, Dheeraj K., Kwan-Wu Chin, and Raad Raad, "A survey and tutorial of RFID anti-collision protocols," IEEE Communications Surveys & Tutorials, Vol. 12, No. 3, 400-421, 2010.
doi:10.1109/surv.2010.031810.00037

14. Yaacob, Marizan, Noraimi Shafie, Norliza Mohamed, and Azizul Azizan, "Group collision tracking tree for passive multi-tags RFID systems," International Journal of Integrated Engineering, Vol. 16, No. 3, 257-272, 2024.
doi:10.30880/ijie.2024.16.03.023

15. Šolić, Petar, Joško Radić, and Nikola Rožić, "Energy efficient tag estimation method for ALOHA-based RFID systems," IEEE Sensors Journal, Vol. 14, No. 10, 3637-3647, 2014.
doi:10.1109/jsen.2014.2330418

16. Thomas, Athul, Midhun Muraleedharan Sylaja, and James Kurian, "Leveraging time-domain signals for multi-tag classification in chipless RFID systems using classifier chains," Progress In Electromagnetics Research C, Vol. 156, 1-12, 2025.
doi:10.2528/pierc25031903

17. Görtschacher, Lukas and J. Grosinger, "Localization of signal pattern based UHF RFID sensor tags," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 11, 753-756, 2019.
doi:10.1109/lmwc.2019.2940082

18. Grosinger, Jasmin, Lukas Görtschacher, and Wolfgang Bösch, "Passive RFID sensor tag concept and prototype exploiting a full control of amplitude and phase of the tag signal," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4752-4762, 2016.
doi:10.1109/tmtt.2016.2623610

19. Görtschacher, Lukas Johann and Jasmin Grosinger, "UHF RFID sensor system using tag signal patterns: Prototype system," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2209-2213, 2019.
doi:10.1109/lawp.2019.2940336

20. Gao, Zheng, Yongtao Ma, Kaihua Liu, Xinlong Miao, and Yang Zhao, "An indoor multi-tag cooperative localization algorithm based on NMDS for RFID," IEEE Sensors Journal, Vol. 17, No. 7, 2120-2128, 2017.
doi:10.1109/jsen.2017.2664338

21. Rezaiesarlak, Reza and Majid Manteghi, "A space-time-frequency anticollision algorithm for identifying chipless RFID tags," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1425-1432, 2014.
doi:10.1109/tap.2013.2295393

22. Kheawprae, Feaveya, Akkarat Boonpoonga, and Danai Torrungrueng, "Complex natural resonance-based chipless RFID multi-tag detection using one-dimensional convolutional neural networks," IEEE Access, Vol. 11, 138078-138094, 2023.
doi:10.1109/access.2023.3339825

23. Wang, Ling, Zhongqiang Luo, Ruiming Guo, and Yongqi Li, "A review of tags anti-collision identification methods used in RFID technology," Electronics, Vol. 12, No. 17, 3644, 2023.
doi:10.3390/electronics12173644

24. Sarkar, Sayan, "Three dual-band and dual-linearly polarized antenna configurations for UHF-RFID and WLAN applications," IEEE Journal of Radio Frequency Identification, Vol. 8, 571-579, 2024.
doi:10.1109/jrfid.2024.3409362

25. Kumari, Sonali, Yogendra K. Awasthi, and Dipali Bansal, "A miniaturized circularly polarized multiband antenna for Wi-MAX, C-band & X-band applications," Progress In Electromagnetics Research C, Vol. 125, 117-131, 2022.
doi:10.2528/pierc22082501

26. Yao, Yuan, Qiuyue Ge, Junsheng Yu, and Xiaodong Chen, "A novel antenna for UHF RFID near-field applications," Electronics, Vol. 10, No. 11, 1310, 2021.
doi:10.3390/electronics10111310

27. Barman, Bidisha, Sudhir Bhaskar, and Amit Kumar Singh, "Dual-band UHF RFID tag antenna using two eccentric circular rings," Progress In Electromagnetics Research M, Vol. 71, 127-136, 2018.
doi:10.2528/pierm18062001

28. Jin, Kui, Zhiyuan Geng, Jingming Zheng, Ye Liu, Enze Zhang, Yang Yang, and Xiaoxiang He, "Analysis of dual-port reader antenna for UHF RFID near-field applications," Progress In Electromagnetics Research M, Vol. 72, 31-40, 2018.
doi:10.2528/pierm18052001

29. Gu, Xiaozhong and Wen Geyi, "Design of a near-field RFID antenna array in metal cabinet environment," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 79-83, 2019.
doi:10.1109/lawp.2018.2880965

30. Hester, Jimmy G. D. and Manos M. Tentzeris, "Inkjet-printed flexible mm-Wave Van-Atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4763-4773, 2016.
doi:10.1109/tmtt.2016.2623790

31. Lai, Fei-Peng and Yen-Sheng Chen, "A broadband dual-polarized antenna with pattern reconfigurability for multi-tag detection in chipless RFID," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 8, 6008-6013, 2025.
doi:10.1109/tap.2025.3562772

32. Deng, Wei, Zhe Li, Yili Xia, Kai Wang, and Wenjiang Pei, "A widely linear MMSE anti-collision method for multi-antenna RFID readers," IEEE Communications Letters, Vol. 23, No. 4, 644-647, 2019.
doi:10.1109/lcomm.2019.2902545

33. Dodds, Laura, Isaac Perper, Aline Eid, and Fadel Adib, "A handheld fine-grained RFID localization system with complex-controlled polarization," Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, Vol. 7, 1-15, Madrid, Spain, Oct. 2023.
doi:10.1145/3570361.3592504

34. Valagiannopoulos, Constantinos, "High selectivity and controllability of a parallel-plate component with a filled rectangular ridge," Progress In Electromagnetics Research, Vol. 119, 497-511, 2011.
doi:10.2528/pier11062603

35. Monticone, Francesco, Christos Argyropoulos, and Andrea Alù, "Multilayered plasmonic covers for comblike scattering response and optical tagging," Physical Review Letters, Vol. 110, No. 11, 113901, 2013.
doi:10.1103/physrevlett.110.113901

36. Valagiannopoulos, Constantinos, "Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna," Progress In Electromagnetics Research, Vol. 71, 59-83, 2007.
doi:10.2528/pier07021103

37. Rakibet, Osman O., Christina V. Rumens, John C. Batchelor, and Simon J. Holder, "Epidermal passive RFID strain sensor for assisted technologies," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 814-817, 2014.
doi:10.1109/lawp.2014.2318996

38. Nan, Xueli, Qikun Jia, Fei Lv, Xin Wang, Guirong Wu, Yunlong Zhao, Bolin Qin, Jinjin Hao, Xinxin Cao, Shixuan Mei, et al. "A review of research on RF MEMS for metaverse interactions," Journal of Micromechanics and Microengineering, Vol. 34, No. 8, 083003, 2024.
doi:10.1088/1361-6439/ad63b2

39. Wu, Jian, Xingmei Cui, and Yunpeng Xu, "A novel RFID-based sensing method for low-cost bolt loosening monitoring," Sensors, Vol. 16, No. 2, 168, 2016.
doi:10.3390/s16020168

40. Song, Zequn, Budi Rahmadya, Ran Sun, and Shigeki Takeda, "An RFID-based wireless vibration and physical-shock sensing system using edge processing," IEEE Sensors Journal, Vol. 22, No. 20, 20010-20018, 2022.
doi:10.1109/jsen.2022.3203994

41. Liu, Gang, Qi-Ang Wang, Guiyue Jiao, Pengyuan Dang, Guohao Nie, Zichen Liu, and Junyu Sun, "Review of wireless RFID strain sensing technology in structural health monitoring," Sensors, Vol. 23, No. 15, 6925, 2023.
doi:10.3390/s23156925

42. Medeiros, Carla R., Jorge R. Costa, and Carlos A. Fernandes, "RFID reader antennas for tag detection in self-confined volumes at UHF," IEEE Antennas and Propagation Magazine, Vol. 53, No. 2, 39-50, 2011.
doi:10.1109/map.2011.5949323

43. Lorrain, P. and D. R. Corson, Electromagnetic fields and Waves, W. H. Freeman and Company, 1970.

44. Balanis, Constantine A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, 2016.