Vol. 136
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-10-30
Coin-Sized Dual-Band Millimeter-Wave (mmWave) Antenna with Machine-Learning-Guided Impedance Prediction
By
Progress In Electromagnetics Research M, Vol. 136, 1-12, 2025
Abstract
This study suggests a coin-sized (10 × 8 × 0.64 mm3) millimetre-wave antenna that simultaneously resonates at 28 GHz and 38 GHz and is supported by a machine-learning surrogate for near-instant impedance evaluation. Realised on Rogers 6010 LM laminate (εr = 10.2), the radiator maintains |S11| ≤ -10 dB across 26.5-29.9 GHz and 37.2-39.7 GHz while providing peak gains of 3.8 dBi and 4.1 dBi in the lower and upper bands, respectively. A design-of-experiments sweep, comprising 330 full-wave simulations, generated the training corpus for a random-forest regression model. The surrogate predicts frequency-resolved |S11| with a mean-absolute error below 0.7 dB and coefficients of determination of 0.93 at 28 GHz and 0.84 at 38 GHz. The evaluation time is reduced from approximately 155 s per full-wave electromagnetic simulation to 0.1 s per surrogate query, enabling real-time design exploration. Eight-fold cross-validation confirms model stability, while feature-importance analysis identifies the geometric parameters most influential to dual-band matching. The learning-guided workflow therefore offers a fast and reliable alternative to exhaustive simulation, accelerating the optimisation of compact mmWave antennas for instrumentation, sensing, and future front-end modules.
Citation
Ahmed Jamal Abdullah Al-Gburi, "Coin-Sized Dual-Band Millimeter-Wave (mmWave) Antenna with Machine-Learning-Guided Impedance Prediction," Progress In Electromagnetics Research M, Vol. 136, 1-12, 2025.
doi:10.2528/PIERM25071303
References

1. Rappaport, Theodore S., Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kevin Wang, George N. Wong, Jocelyn K. Schulz, Mathew Samimi, and Felix Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/access.2013.2260813

2. Abdullah Al-Gburi, A. J., "5G MIMO antenna: Compact design at 28/38 GHz with metamaterial and SAR analysis for mobile phones," Przeglad Elektrotechniczny, Vol. 2024, No. 4, 171-174, 2024.
doi:10.15199/48.2024.04.32

3. Jemaludin, Nazrin Haziq, Ahmed Jamal Abdullah Al-Gburi, Rania Hamdy Elabd, Tale Saeidi, Muhammad Firdaus Akbar, Imran Mohd Ibrahim, and Zahriladha Zakaria, "A comprehensive review on MIMO antennas for 5G smartphones: Mutual coupling techniques, comparative studies, SAR analysis, and future directions," Results in Engineering, Vol. 23, 102712, Sep. 2024.
doi:10.1016/j.rineng.2024.102712

4. Tiwari, Rakesh N., O. Sevankith Sai, Deepti Sharma, M. Shiva Kumar, Prabhakar Singh, Pradeep Kumar, Chittor Sreemanya, and S. Rajasekaran, "A low-profile dual-band millimeter wave patch antenna for high-speed wearable and biomedical applications," Results in Engineering, Vol. 24, 103212, Dec. 2024.
doi:10.1016/j.rineng.2024.103212

5. Ullah, Hidayat, Hattan F. Abutarboush, Aamir Rashid, and Farooq A. Tahir, "A compact low-profile antenna for millimeter-wave 5G mobile phones," Electronics, Vol. 11, No. 19, 3256, 2022.
doi:10.3390/electronics11193256

6. Liang, Qiuyan, Hanieh Aliakbari, and Buon Kiong Lau, "Co-designed millimeter-wave and sub-6 GHz antenna for 5G smartphones," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 10, 1995-1999, Oct. 2022.
doi:10.1109/lawp.2022.3187782

7. Oh, Jeongtaek, Byeongjin Kim, Sangrock Yoon, Kiseo Kim, Eun Jin Sung, and Jungsuek Oh, "High-gain millimeter-wave antenna-in-display using non-optical space for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1458-1468, Feb. 2023.
doi:10.1109/tap.2022.3228912

8. Khabba, Asma, Sraddhanjali Mohapatra, Layla Wakrim, Fatima Ez-zaki, Saida Ibnyaich, and Abdelouhab Zeroual, "Multiband antenna design with high gain and robust spherical coverage using a new 3D phased array structure for 5G mobile phone mm-Wave applications," Analog Integrated Circuits and Signal Processing, Vol. 110, No. 2, 331-348, 2022.
doi:10.1007/s10470-021-01954-4

9. Jain, Prince, Prabodh K. Sahoo, Aymen D. Khaleel, and Ahmed Jamal Abdullah Al-Gburi, "Enhanced prediction of metamaterial antenna parameters using advanced machine learning regression models," Progress In Electromagnetics Research C, Vol. 146, 1-12, 2024.
doi:10.2528/pierc24060901

10. Rana, Md․ Sohel, Sheikh Md․ Rabiul Islam, and Sanjukta Sarker, "Machine learning based on patch antenna design and optimization for 5G applications at 28 GHz," Results in Engineering, Vol. 24, 103366, 2024.
doi:10.1016/j.rineng.2024.103366

11. Yadav, Sachin Kumar, Anupma Gupta, Vipan Kumar, Dinesh Kumar Garg, and Ahmed J. A. Al-Gburi, "Prediction of axial ratio using machine learning (ML) for a dual-band circularly polarized dielectric resonator antenna (DRA)," Chinese Journal of Physics, Vol. 96, 1364-1384, 2025.
doi:10.1016/j.cjph.2025.07.008

12. Ramasamy, Rajendran and Maria Anto Bennet, "An efficient antenna parameters estimation using machine learning algorithms," Progress In Electromagnetics Research C, Vol. 130, 169-181, 2023.
doi:10.2528/pierc22121004

13. Huang, Chung-Hao, Han-Hsiang Tsao, Chang-Chen Hsu, Amir Ali, and Sen-Yu Liao, "Antenna structure prediction and optimization based on machine learning and grid search," 2024 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-3, Taoyuan County, Taiwan, 2024.
doi:10.1109/iwem59914.2024.10649305

14. Jain, Rachit, R. Ramya, Vandana Vikas Thakare, and P. K. Singhal, "Design and analysis of antenna through machine learning for next-generation IoT system," Discover Internet of Things, Vol. 5, No. 1, 1-15, 2025.
doi:10.1007/s43926-025-00126-4

15. Abdelhamid, Abdelaziz A. and Sultan R. Alotaibi, "Robust prediction of the bandwidth of metamaterial antenna using deep learning," Computers, Materials & Continua, Vol. 72, No. 2, 2305-2321, 2022.
doi:10.32604/cmc.2022.025739

16. Gajbhiye, Pradnya A., Satya P. Singh, and Madan Kumar Sharma, "A comprehensive review of AI and machine learning techniques in antenna design optimization and measurement," Discover Electronics, Vol. 2, No. 1, 46, 2025.
doi:10.1007/s44291-025-00084-9

17. Koziel, Slawomir, Mehmet Ali Belen, Alper Çalişkan, and Peyman Mahouti, "Rapid design of 3D reflectarray antennas by inverse surrogate modeling and regularization," IEEE Access, Vol. 11, 24175-24184, 2023.
doi:10.1109/access.2023.3254204

18. Koziel, Slawomir and Anna Pietrenko-Dabrowska, "On nature-inspired design optimization of antenna structures using variable-resolution EM models," Scientific Reports, Vol. 13, No. 1, 8373, 2023.
doi:10.1038/s41598-023-35470-4

19. Koziel, Slawomir, Anna Pietrenko-Dabrowska, and Lukasz Golunski, "Globalized knowledge-based, simulation-driven antenna miniaturization using domain-confined surrogates and dimensionality reduction," Applied Sciences, Vol. 13, No. 14, 8144, 2023.
doi:10.3390/app13148144

20. Thakur, Ekta, Anupma Gupta, Muhannad K. Abdulhameed, Aymen D. Khaleel, and Ahmed Jamal Abdullah Al-Gburi, "Microstrip antenna with two elements and defected ground structure for 5G mobile applications at 28/38 GHz," Progress In Electromagnetics Research C, Vol. 146, 177-185, 2024.
doi:10.2528/pierc24062403

21. Gupta, Anupma, Vipan Kumar, Dinesh Kumar Garg, and Ahmed Jamal Abdullah Al-Gburi, "Machine learning-based reflection coefficient and impedance prediction for a meandered slot patch antenna," Materials Science in Semiconductor Processing, Vol. 188, 109245, 2025.
doi:10.1016/j.mssp.2024.109245

22. Singh, Om, Manjula R. Bharamagoudra, Harshit Gupta, Ajay Kumar Dwivedi, Pinku Ranjan, and Anand Sharma, "Microstrip line fed dielectric resonator antenna optimization using machine learning algorithms," Sādhanā, Vol. 47, No. 4, 226, 2022.
doi:10.1007/s12046-022-01989-x

23. Haque, Md. Ashraful, Nayan Sarker, Narinderjit Singh Sawaran Singh, Md. Afzalur Rahman, Md. Nahid Hasan, Mirajul Islam, Mohd Azman Zakariya, Liton Chandra Paul, Adiba Haque Sharker, Ghulam E. Mustafa Abro, et al. "Dual band antenna design and prediction of resonance frequency using machine learning approaches," Applied Sciences, Vol. 12, No. 20, 10505, 2022.
doi:10.3390/app122010505

24. Jain, Rachit, Pinku Ranjan, P. K. Singhal, and Vandana Vikas Thakare, "Estimation of S11 values of patch antenna using various machine learning models," 2022 IEEE Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), 1-4, Gwalior, India, 2022.
doi:10.1109/iatmsi56455.2022.10119256