Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-14
Metasurface-Driven Improvement in MIMO Antenna Performance by Addressing Mutual Coupling
By
Progress In Electromagnetics Research C, Vol. 163, 73-80, 2026
Abstract
In this paper, a metasurface is proposed as an effective solution to enhance the performance of MIMO antennas by reducing mutual coupling. This reduction is attributed to the metasurface's negative permeability at the resonant frequency, which helps to block waves propagating between the two adjacent structures. The designed metasurface consists of a 2D array of omega-shaped resonators placed over two linearly polarized patch antennas. Measurement results show a 15 dB reduction in coupling when the metasurface is positioned 0.14λ0 above two closely spaced antennas separated by 0.06λ0 at a resonant frequency of 2.85 GHz. Additionally, improvements in other characteristics of the whole structure, such as gain and radiation efficiency, were also observed. Such an achievement has not been reported in the literature on previous metasurface-based decoupling methods. This technique can be useful for massive multiple input multiple output (mMIMO) systems for wireless communications.
Citation
Safia Jaouad, Chaymae Chahboun, Mohamoed Ali Ennasar, Otman El Mrabet, Jesus Ramon Perez Lopez, Mohsine Khalladi, and Mariem Aznabet, "Metasurface-Driven Improvement in MIMO Antenna Performance by Addressing Mutual Coupling," Progress In Electromagnetics Research C, Vol. 163, 73-80, 2026.
doi:10.2528/PIERC25071401
References

1. Jensen, M. A. and J. W. Wallace, "A review of antennas and propagation for MIMO wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2810-2824, 2004.
doi:10.1109/tap.2004.835272

2. Duggani, Lingaraj, Udaykumar Naik, and Vijay Rayar, "Review of mutual coupling reduction in microstrip patch antenna array for MIMO applications," 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 1227-1231, Thoothukudi, India, 2020.
doi:10.1109/ICISS49785.2020.9316130

3. Chen, Xiaoming, Shuai Zhang, and Qinlong Li, "A review of mutual coupling in MIMO systems," IEEE Access, Vol. 6, 24706-24719, 2018.
doi:10.1109/access.2018.2830653

4. Larsson, Erik G., Ove Edfors, Fredrik Tufvesson, and Thomas L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, 2014.
doi:10.1109/mcom.2014.6736761

5. Wang, Ziyang, Luyu Zhao, Yuanming Cai, Shufeng Zheng, and Yingzeng Yin, "A meta-surface antenna array decoupling (MAAD) method for mutual coupling reduction in a MIMO antenna system," Scientific Reports, Vol. 8, No. 1, 3152, 2018.
doi:10.1038/s41598-018-21619-z

6. Wang, Ziyang, Chenglei Li, and Yingzeng Yin, "A meta-surface antenna array decoupling (MAAD) design to improve the isolation performance in a MIMO system," IEEE Access, Vol. 8, 61797-61805, 2020.
doi:10.1109/access.2020.2983482

7. Wang, Ziyang, Chenglei Li, Qiong Wu, and Yingzeng Yin, "A metasurface-based low-profile array decoupling technology to enhance isolation in MIMO antenna systems," IEEE Access, Vol. 8, 125565-125575, 2020.
doi:10.1109/access.2020.3007188

8. Guha, D., S. Biswas, M. Biswas, J. Y. Siddiqui, and Y. M. M. Antar, "Concentric ring-shaped defected ground structures for microstrip applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 402-405, 2006.
doi:10.1109/lawp.2006.880691

9. Pan, Bai Cao, Wen Xuan Tang, Mei Qing Qi, Hui Feng Ma, Zui Tao, and Tie Jun Cui, "Reduction of the spatially mutual coupling between dual-polarized patch antennas using coupled metamaterial slabs," Scientific Reports, Vol. 6, No. 1, 30288, 2016.
doi:10.1038/srep30288

10. Alibakhshikenari, Mohammad, Fatemeh Babaeian, Bal S. Virdee, Sonia Aïssa, Leyre Azpilicueta, Chan Hwang See, Ayman Abdulhadi Althuwayb, Isabelle Huynen, Raed A. Abd-Alhameed, Francisco Falcone, and Ernesto Limiti, "A comprehensive survey on ``Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems''," IEEE Access, Vol. 8, 192965-193004, 2020.
doi:10.1109/ACCESS.2020.3032826

11. Jaouad, Safia, Ikhlas Hammouchi, Mohsine Khalladi, Otman El Mrabet, and Mariem Aznabet, "Enhanced coupling and bandwidth in MIMO system antenna based on dielectric resonator antenna using meta-surface," 2024 International Microwave and Antenna Symposium (IMAS), 1-4, Marrakech, Morocco, 2024.
doi:10.1109/IMAS61316.2024.10818170

12. Tang, Guangpu, Tong Xiao, Lifeng Cao, Runsheng Cheng, Chengguo Liu, Lifeng Huang, and Xin Xu, "A multi-frequency low-coupling MIMO antenna based on metasurface," Electronics, Vol. 13, No. 11, 2146, 2024.
doi:10.3390/electronics13112146

13. Wu, Ting and Lei Yan, "High isolation circularly polarized MIMO antenna based on metasurfaces," iScience, Vol. 27, No. 9, 110749, 2024.
doi:10.1016/j.isci.2024.110749

14. Khadar, Shaik Abdul and Sudhakar Sahu, "A tri-band CP MIMO antenna influenced by metasurface for next generation wireless communication," Journal of Electromagnetic Waves and Applications, Vol. 39, No. 15, 1794-1823, 2025.
doi:10.1080/09205071.2025.2529463

15. Pfeiffer, Carl, Cheng Zhang, Vishva Ray, L. Jay Guo, and Anthony Grbic, "High performance bianisotropic metasurfaces: Asymmetric transmission of light," Physical Review Letters, Vol. 113, No. 2, 023902, 2014.
doi:10.1103/physrevlett.113.023902

16. Saadoun, Mamdouh M. I. and Nader Engheta, "A reciprocal phase shifter using novel pseudochiral or ω medium," Microwave and Optical Technology Letters, Vol. 5, No. 4, 184-188, 1992.
doi:10.1002/mop.4650050412