1. Anwar, Rana Sadaf, Lingfeng Mao, and Huansheng Ning, "Frequency selective surfaces: A review," Applied Sciences, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689
2. Fallah, Mahmoud, Alireza Ghayekhloo, and Ali Abdolali, "Design of frequency selective band stop shield using analytical method," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14, No. 2, 217-228, 2015.
doi:10.1590/2179-10742015v14i2536
3. Kapoor, Ankush, Ranjan Mishra, and Pradeep Kumar, "Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications," Alexandria Engineering Journal, Vol. 61, No. 6, 4263-4293, 2022.
doi:10.1016/j.aej.2021.09.046
4. Singh, Dharmendra, Abhishek Kumar, Shivram Meena, and Vijaya Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
doi:10.2528/pierb11121601
5. Ghayekhloo, Alireza, Majid Afsahi, and Ali A. Orouji, "Checkerboard plasma electromagnetic surface for wideband and wide-angle bistatic radar cross section reduction," IEEE Transactions on Plasma Science, Vol. 45, No. 4, 603-609, 2017.
doi:10.1109/tps.2017.2675282
6. Pakdin, Mahdi, Alireza Ghayekhloo, Pejman Rezaei, and Majid Afsahi, "Transparent dual band Wi-Fi filter for double glazed energy saving window as a smart network," Microwave and Optical Technology Letters, Vol. 61, No. 11, 2545-2550, 2019.
doi:10.1002/mop.31916
7. Sarabandi, Kamal and Nader Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/tap.2007.895567
8. Afzal, Muhammad U., Ali Lalbakhsh, and Karu P. Esselle, "Method to enhance directional propagation of circularly polarized antennas by making near-electric field phase more uniform," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4447-4456, 2021.
doi:10.1109/tap.2021.3060057
9. Akbari, Mohammad, Mohammadmahdi Farahani, Alireza Ghayekhloo, Saman Zarbakhsh, Abdel-Razik Sebak, and Tayeb A. Denidni, "Beam tilting approaches based on phase gradient surface for mmWave antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4372-4385, 2020.
doi:10.1109/tap.2020.2972375
10. Ghayekhloo, Alireza, Mohammad Akbari, Majid Afsahi, Ali A. Orouji, Abdel R. Sebak, and Tayeb A. Denidni, "Multifunctional transparent electromagnetic surface based on solar cell for backscattering reduction," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4302-4306, 2019.
doi:10.1109/tap.2019.2911196
11. Ghayekhloo, Alireza, Majid Afsahi, Ali A. Orouji, and Tayeb A. Denidni, "Triangle and aperiodic metasurfaces for bistatic backscattering engineering," Physica Status Solidi (b), Vol. 256, No. 10, 1900059, 2019.
doi:10.1002/pssb.201900059
12. Denidni, Tayeb A., Yacouba Coulibaly, and Halim Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1043-1049, 2009.
doi:10.1109/tap.2009.2015809
13. Karami, Farzad, Pejman Rezaei, Ali Amn-e-Elahi, and Ashkan Abolfathi, "An X-band substrate integrated waveguide fed patch array antenna: Overcoming low efficiency, narrow impedance bandwidth, and cross-polarization radiation challenges," IEEE Antennas and Propagation Magazine, Vol. 63, No. 5, 25-32, 2021.
doi:10.1109/map.2020.3043457
14. Mehrabi, Mohammad, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani, "Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances," Applied Optics, Vol. 57, No. 14, 3693-3703, 2018.
doi:10.1364/ao.57.003693
15. Kiourti, Asimina, "RFID antennas for body-area applications: From wearables to implants," IEEE Antennas and Propagation Magazine, Vol. 60, No. 5, 14-25, 2018.
doi:10.1109/map.2018.2859167
16. Jin, Cheng, Qihao Lv, Binchao Zhang, Jinlin Liu, Sining An, Zhongxia Simon He, and Zhongxiang Shen, "Ultra-wide-angle bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5673-5681, 2021.
doi:10.1109/tap.2021.3061144
17. Hashemi, Soheil and Ali Abdolali, "Room shielding with frequency-selective surfaces for electromagnetic health application," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 291-298, 2017.
doi:10.1017/s1759078716000015
18. Zarbakhsh, Saman, Mohammad Akbari, Mohammadmahdi Farahani, Alireza Ghayekhloo, Tayeb A. Denidni, and Abdel-Razik Sebak, "Optically transparent subarray antenna based on solar panel for CubeSat application," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 319-328, 2020.
doi:10.1109/tap.2019.2938740
19. Yan, Mingbao, Shaobo Qu, Jiafu Wang, Jieqiu Zhang, Anxue Zhang, Song Xia, and Wenjie Wang, "A novel miniaturized frequency selective surface with stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 639-641, 2014.
doi:10.1109/lawp.2014.2313067
20. Lee, In-Gon and Ic-Pyo Hong, "Scalable frequency selective surface with stable angles of incidence on a thin flexible substrate," International Journal of Antennas and Propagation, Vol. 2016, No. 1, 6891065, 2016.
doi:10.1155/2016/6891065
21. Gao, Meng, Seyed Mohamad Amin Momeni Hasan Abadi, and Nader Behdad, "A dual-band, inductively coupled miniaturized-element frequency selective surface with higher order bandpass response," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3729-3734, 2016.
doi:10.1109/tap.2016.2580181
22. Ghosh, Saptarshi and Kumar Vaibhav Srivastava, "An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 218-220, 2017.
doi:10.1109/lmwc.2017.2661683
23. Oraizi, Homayoon and Shahram Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/lawp.2011.2109030
24. Bayatpur, F., "Metamaterial-inspired frequency-selective surfaces," The University of Michigan, MI, USA, 2009.
25. Bayatpur, Farhad and Kamal Sarabandi, "Single-layer high-order miniaturized-element frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/tmtt.2008.919654
26. Ghosh, Saptarshi and Kumar Vaibhav Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 511-514, 2014.
doi:10.1109/lawp.2014.2369732
27. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Vol. 4, Vol. 4, Springer Science & Business Media, 2001.
28. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 7, 1078-1085, 1997.
doi:10.1109/22.598444
29. Wang, Wensong, Qunsheng Cao, and Yuanjin Zheng, "Bandstop frequency-selective structures based on stepped-impedance loop resonators: Design, analysis, and measurement," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1053-1064, 2019.
doi:10.1109/tap.2018.2880011
30. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Coplanar stripline components for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, 1725-1729, 1997.
doi:10.1109/22.641719
31. Simons, R. N., N. I. Dib, and L. P. B. Katehi, "Modeling of coplanar stripline discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 5, 711-716, 1996.
doi:10.1109/22.493924
32. Zhu, Lei and Ke Wu, "Field-extracted lumped-element models of coplanar stripline circuits and discontinuities for accurate radiofrequency design and optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1207-1215, 2002.
doi:10.1109/22.993426
33. Zhang, Jian-Cheng, Ying-Zeng Yin, and Jin-Ping Ma, "Frequency selective surfaces with fractal four legged elements," Progress In Electromagnetics Research Letters, Vol. 8, 1-8, 2009.
doi:10.2528/pierl08112301
34. ANSYS, I., "ANSYS HFSS 2025," Computer soft-ware, Canonsburg, PA, USA. [Online]. Available: https://www.ansys.com/products/electronics/ansys-hfss, 2025.
35. Li, Huangyan and Qunsheng Cao, "Design and analysis of a controllable miniaturized tri-band frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 52, 105-112, 2015.
doi:10.2528/pierl14121803
36. Li, Yi, Ruize Xu, Peng Ren, Baoyi Xu, Minrui Wang, Chen Chen, Keqing Chen, and Zheng Xiang, "Design of miniaturized and polarization insensitive frequency selective surface filter with large band ratio," Journal of Applied Physics, Vol. 137, No. 2, 023103, 2025.
doi:10.1063/5.0243684
37. Kanagasabai, Malathi, Shini Ramadoss, Lavanya Viswanathan, M. Gulam Nabi Alsath, and Sandeep Kumar Palaniswamy, "A novel miniaturized swastika-based dual band-stop frequency selective surface," Waves in Random and Complex Media, 1-12, 2024.
doi:10.1080/17455030.2024.2444251
38. Khan, Safiullah and Thomas F. Eibert, "A multifunctional metamaterial-based dual-band isotropic frequency-selective surface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4042-4051, Aug. 2018.
doi:10.1109/tap.2018.2835667
39. Li, Qiannan, Qing Wang, Hui Zhang, Jian-Qiang Hou, and Jun Zhao, "A new miniaturized double stop-band frequency selective surface," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 1, 9-16, 2024.
doi:10.13052/2024.aces.j.390102
40. Dey, Soumik, Sukomal Dey, and Shiban K. Koul, "Miniaturized dual stop band frequency selective surface with broadband linear co to cross polarization conversion ability," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 9, e22779, 2021.
doi:10.1002/mmce.22779
41. Lira, Ruann Victor de Andrade, Bruno Sátiro da Silva, Antonio Luiz P. S. Campos, and Alfredo Gomes Neto, "A dual-band complementary frequency selective surface combining structures that provides narrow and wide stop-band frequency responses," Microwave and Optical Technology Letters, Vol. 65, No. 12, 3107-3112, 2023.
doi:10.1002/mop.33842
42. Li, Jinping, Xinyu Hou, and Yonggang Xu, "An ultra-thin flexible double-layer dual-band frequency selective surface," Journal of Electronic Materials, Vol. 52, No. 1, 514-522, 2023.
doi:10.1007/s11664-022-10020-2
43. Chomtong, P., P. Krachodnok, K. Bandudej, and P. Akkaraekthalin, "A multiband FSS director using aperture interdigital structure for wireless communication systems," IEEE Access, Vol. 10, 11206-11219, 2022.
doi:10.1109/access.2022.3144642
44. Wang, Hui, Shaobo Qu, Jiafu Wang, Mingbao Yan, and Lin Zheng, "Dual-band miniaturised FSS with stable resonance frequencies of 3.4/4.9 GHz for 5G communication systems applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 1, 1-6, 2020.
doi:10.1049/iet-map.2018.6145