Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-09-30
Synthesis of Miniaturized Frequency-Selective Surfaces Using Stepped Impedance Resonators for Spurious Shift Control
By
Progress In Electromagnetics Research M, Vol. 135, 55-68, 2025
Abstract
Frequency-Selective Surfaces (FSSs) are structures designed to selectively transmit or reflect electromagnetic waves, making them essential for applications requiring precise control over frequency bands and wave propagation characteristics. However, traditional FSS designs face challenges such as fixed geometries, limited scalability, and poor bandwidth efficiency, often requiring compromises between size reduction and performance. To address these limitations, this work introduces the use of Stepped Impedance Resonators (SIRs) to synthesize miniaturized FSS structures with four-legged elements (FLEs). By combining transmission line theory, SIR equations, and parallel coplanar stripline models, an innovative synthesis method is proposed, enabling precise control over spurious frequencies and resulting in a 54% reduction in unit-cell size without sacrificing performance. This approach significantly enhances the feasibility of compact FSS applications. To further improve performance, an arrow-bending technique was introduced to reduce the coupling between adjacent cells, yielding a 30% improvement in isolation. Three distinct surface designs have been fabricated and tested under both normal incidence and oblique angles for TE and TM modes. These designs include the SIR-based FSS cell, an enhanced design featuring arrow bending, and a reverse arrow formation intended to reduce edge effects between adjacent cells. Additionally, measurements demonstrate excellent performance stability, with tolerance maintained for incident angles up to 60°. Experimental validation confirms effective blocking at 10 GHz and highlights the robustness of the design across varying incident angles. Prototypes fabricated from the miniaturized FSS elements show excellent agreement with simulations, underscoring the potential of this method for advanced applications in communications, radar, and electromagnetic shielding.
Citation
Salem Bousnadji, Larbi Talbi, Khelifa Hettak, and Mohamed Mamdouh M. Ali, "Synthesis of Miniaturized Frequency-Selective Surfaces Using Stepped Impedance Resonators for Spurious Shift Control," Progress In Electromagnetics Research M, Vol. 135, 55-68, 2025.
doi:10.2528/PIERM25071808
References

1. Anwar, Rana Sadaf, Lingfeng Mao, and Huansheng Ning, "Frequency selective surfaces: A review," Applied Sciences, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689

2. Fallah, Mahmoud, Alireza Ghayekhloo, and Ali Abdolali, "Design of frequency selective band stop shield using analytical method," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14, No. 2, 217-228, 2015.
doi:10.1590/2179-10742015v14i2536

3. Kapoor, Ankush, Ranjan Mishra, and Pradeep Kumar, "Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications," Alexandria Engineering Journal, Vol. 61, No. 6, 4263-4293, 2022.
doi:10.1016/j.aej.2021.09.046

4. Singh, Dharmendra, Abhishek Kumar, Shivram Meena, and Vijaya Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
doi:10.2528/pierb11121601

5. Ghayekhloo, Alireza, Majid Afsahi, and Ali A. Orouji, "Checkerboard plasma electromagnetic surface for wideband and wide-angle bistatic radar cross section reduction," IEEE Transactions on Plasma Science, Vol. 45, No. 4, 603-609, 2017.
doi:10.1109/tps.2017.2675282

6. Pakdin, Mahdi, Alireza Ghayekhloo, Pejman Rezaei, and Majid Afsahi, "Transparent dual band Wi-Fi filter for double glazed energy saving window as a smart network," Microwave and Optical Technology Letters, Vol. 61, No. 11, 2545-2550, 2019.
doi:10.1002/mop.31916

7. Sarabandi, Kamal and Nader Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/tap.2007.895567

8. Afzal, Muhammad U., Ali Lalbakhsh, and Karu P. Esselle, "Method to enhance directional propagation of circularly polarized antennas by making near-electric field phase more uniform," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4447-4456, 2021.
doi:10.1109/tap.2021.3060057

9. Akbari, Mohammad, Mohammadmahdi Farahani, Alireza Ghayekhloo, Saman Zarbakhsh, Abdel-Razik Sebak, and Tayeb A. Denidni, "Beam tilting approaches based on phase gradient surface for mmWave antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4372-4385, 2020.
doi:10.1109/tap.2020.2972375

10. Ghayekhloo, Alireza, Mohammad Akbari, Majid Afsahi, Ali A. Orouji, Abdel R. Sebak, and Tayeb A. Denidni, "Multifunctional transparent electromagnetic surface based on solar cell for backscattering reduction," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4302-4306, 2019.
doi:10.1109/tap.2019.2911196

11. Ghayekhloo, Alireza, Majid Afsahi, Ali A. Orouji, and Tayeb A. Denidni, "Triangle and aperiodic metasurfaces for bistatic backscattering engineering," Physica Status Solidi (b), Vol. 256, No. 10, 1900059, 2019.
doi:10.1002/pssb.201900059

12. Denidni, Tayeb A., Yacouba Coulibaly, and Halim Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1043-1049, 2009.
doi:10.1109/tap.2009.2015809

13. Karami, Farzad, Pejman Rezaei, Ali Amn-e-Elahi, and Ashkan Abolfathi, "An X-band substrate integrated waveguide fed patch array antenna: Overcoming low efficiency, narrow impedance bandwidth, and cross-polarization radiation challenges," IEEE Antennas and Propagation Magazine, Vol. 63, No. 5, 25-32, 2021.
doi:10.1109/map.2020.3043457

14. Mehrabi, Mohammad, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani, "Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances," Applied Optics, Vol. 57, No. 14, 3693-3703, 2018.
doi:10.1364/ao.57.003693

15. Kiourti, Asimina, "RFID antennas for body-area applications: From wearables to implants," IEEE Antennas and Propagation Magazine, Vol. 60, No. 5, 14-25, 2018.
doi:10.1109/map.2018.2859167

16. Jin, Cheng, Qihao Lv, Binchao Zhang, Jinlin Liu, Sining An, Zhongxia Simon He, and Zhongxiang Shen, "Ultra-wide-angle bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5673-5681, 2021.
doi:10.1109/tap.2021.3061144

17. Hashemi, Soheil and Ali Abdolali, "Room shielding with frequency-selective surfaces for electromagnetic health application," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 291-298, 2017.
doi:10.1017/s1759078716000015

18. Zarbakhsh, Saman, Mohammad Akbari, Mohammadmahdi Farahani, Alireza Ghayekhloo, Tayeb A. Denidni, and Abdel-Razik Sebak, "Optically transparent subarray antenna based on solar panel for CubeSat application," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 319-328, 2020.
doi:10.1109/tap.2019.2938740

19. Yan, Mingbao, Shaobo Qu, Jiafu Wang, Jieqiu Zhang, Anxue Zhang, Song Xia, and Wenjie Wang, "A novel miniaturized frequency selective surface with stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 639-641, 2014.
doi:10.1109/lawp.2014.2313067

20. Lee, In-Gon and Ic-Pyo Hong, "Scalable frequency selective surface with stable angles of incidence on a thin flexible substrate," International Journal of Antennas and Propagation, Vol. 2016, No. 1, 6891065, 2016.
doi:10.1155/2016/6891065

21. Gao, Meng, Seyed Mohamad Amin Momeni Hasan Abadi, and Nader Behdad, "A dual-band, inductively coupled miniaturized-element frequency selective surface with higher order bandpass response," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3729-3734, 2016.
doi:10.1109/tap.2016.2580181

22. Ghosh, Saptarshi and Kumar Vaibhav Srivastava, "An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 218-220, 2017.
doi:10.1109/lmwc.2017.2661683

23. Oraizi, Homayoon and Shahram Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/lawp.2011.2109030

24. Bayatpur, F., "Metamaterial-inspired frequency-selective surfaces," The University of Michigan, MI, USA, 2009.

25. Bayatpur, Farhad and Kamal Sarabandi, "Single-layer high-order miniaturized-element frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/tmtt.2008.919654

26. Ghosh, Saptarshi and Kumar Vaibhav Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 511-514, 2014.
doi:10.1109/lawp.2014.2369732

27. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Vol. 4, Vol. 4, Springer Science & Business Media, 2001.

28. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 7, 1078-1085, 1997.
doi:10.1109/22.598444

29. Wang, Wensong, Qunsheng Cao, and Yuanjin Zheng, "Bandstop frequency-selective structures based on stepped-impedance loop resonators: Design, analysis, and measurement," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1053-1064, 2019.
doi:10.1109/tap.2018.2880011

30. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Coplanar stripline components for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, 1725-1729, 1997.
doi:10.1109/22.641719

31. Simons, R. N., N. I. Dib, and L. P. B. Katehi, "Modeling of coplanar stripline discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 5, 711-716, 1996.
doi:10.1109/22.493924

32. Zhu, Lei and Ke Wu, "Field-extracted lumped-element models of coplanar stripline circuits and discontinuities for accurate radiofrequency design and optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1207-1215, 2002.
doi:10.1109/22.993426

33. Zhang, Jian-Cheng, Ying-Zeng Yin, and Jin-Ping Ma, "Frequency selective surfaces with fractal four legged elements," Progress In Electromagnetics Research Letters, Vol. 8, 1-8, 2009.
doi:10.2528/pierl08112301

34. ANSYS, I., "ANSYS HFSS 2025," Computer soft-ware, Canonsburg, PA, USA. [Online]. Available: https://www.ansys.com/products/electronics/ansys-hfss, 2025.

35. Li, Huangyan and Qunsheng Cao, "Design and analysis of a controllable miniaturized tri-band frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 52, 105-112, 2015.
doi:10.2528/pierl14121803

36. Li, Yi, Ruize Xu, Peng Ren, Baoyi Xu, Minrui Wang, Chen Chen, Keqing Chen, and Zheng Xiang, "Design of miniaturized and polarization insensitive frequency selective surface filter with large band ratio," Journal of Applied Physics, Vol. 137, No. 2, 023103, 2025.
doi:10.1063/5.0243684

37. Kanagasabai, Malathi, Shini Ramadoss, Lavanya Viswanathan, M. Gulam Nabi Alsath, and Sandeep Kumar Palaniswamy, "A novel miniaturized swastika-based dual band-stop frequency selective surface," Waves in Random and Complex Media, 1-12, 2024.
doi:10.1080/17455030.2024.2444251

38. Khan, Safiullah and Thomas F. Eibert, "A multifunctional metamaterial-based dual-band isotropic frequency-selective surface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4042-4051, Aug. 2018.
doi:10.1109/tap.2018.2835667

39. Li, Qiannan, Qing Wang, Hui Zhang, Jian-Qiang Hou, and Jun Zhao, "A new miniaturized double stop-band frequency selective surface," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 1, 9-16, 2024.
doi:10.13052/2024.aces.j.390102

40. Dey, Soumik, Sukomal Dey, and Shiban K. Koul, "Miniaturized dual stop band frequency selective surface with broadband linear co to cross polarization conversion ability," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 9, e22779, 2021.
doi:10.1002/mmce.22779

41. Lira, Ruann Victor de Andrade, Bruno Sátiro da Silva, Antonio Luiz P. S. Campos, and Alfredo Gomes Neto, "A dual-band complementary frequency selective surface combining structures that provides narrow and wide stop-band frequency responses," Microwave and Optical Technology Letters, Vol. 65, No. 12, 3107-3112, 2023.
doi:10.1002/mop.33842

42. Li, Jinping, Xinyu Hou, and Yonggang Xu, "An ultra-thin flexible double-layer dual-band frequency selective surface," Journal of Electronic Materials, Vol. 52, No. 1, 514-522, 2023.
doi:10.1007/s11664-022-10020-2

43. Chomtong, P., P. Krachodnok, K. Bandudej, and P. Akkaraekthalin, "A multiband FSS director using aperture interdigital structure for wireless communication systems," IEEE Access, Vol. 10, 11206-11219, 2022.
doi:10.1109/access.2022.3144642

44. Wang, Hui, Shaobo Qu, Jiafu Wang, Mingbao Yan, and Lin Zheng, "Dual-band miniaturised FSS with stable resonance frequencies of 3.4/4.9 GHz for 5G communication systems applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 1, 1-6, 2020.
doi:10.1049/iet-map.2018.6145