1. Anwar, Rana Sadaf, Lingfeng Mao, and Huansheng Ning, "Frequency selective surfaces: A review," Applied Sciences, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689 Google Scholar
2. Fallah, Mahmoud, Alireza Ghayekhloo, and Ali Abdolali, "Design of frequency selective band stop shield using analytical method," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14, No. 2, 217-228, 2015.
doi:10.1590/2179-10742015v14i2536 Google Scholar
3. Kapoor, Ankush, Ranjan Mishra, and Pradeep Kumar, "Frequency selective surfaces as spatial filters: Fundamentals, analysis and applications," Alexandria Engineering Journal, Vol. 61, No. 6, 4263-4293, 2022.
doi:10.1016/j.aej.2021.09.046 Google Scholar
4. Singh, Dharmendra, Abhishek Kumar, Shivram Meena, and Vijaya Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
doi:10.2528/pierb11121601 Google Scholar
5. Ghayekhloo, Alireza, Majid Afsahi, and Ali A. Orouji, "Checkerboard plasma electromagnetic surface for wideband and wide-angle bistatic radar cross section reduction," IEEE Transactions on Plasma Science, Vol. 45, No. 4, 603-609, 2017.
doi:10.1109/tps.2017.2675282 Google Scholar
6. Pakdin, Mahdi, Alireza Ghayekhloo, Pejman Rezaei, and Majid Afsahi, "Transparent dual band Wi-Fi filter for double glazed energy saving window as a smart network," Microwave and Optical Technology Letters, Vol. 61, No. 11, 2545-2550, 2019.
doi:10.1002/mop.31916 Google Scholar
7. Sarabandi, Kamal and Nader Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/tap.2007.895567 Google Scholar
8. Afzal, Muhammad U., Ali Lalbakhsh, and Karu P. Esselle, "Method to enhance directional propagation of circularly polarized antennas by making near-electric field phase more uniform," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4447-4456, 2021.
doi:10.1109/tap.2021.3060057 Google Scholar
9. Akbari, Mohammad, Mohammadmahdi Farahani, Alireza Ghayekhloo, Saman Zarbakhsh, Abdel-Razik Sebak, and Tayeb A. Denidni, "Beam tilting approaches based on phase gradient surface for mmWave antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 6, 4372-4385, 2020.
doi:10.1109/tap.2020.2972375 Google Scholar
10. Ghayekhloo, Alireza, Mohammad Akbari, Majid Afsahi, Ali A. Orouji, Abdel R. Sebak, and Tayeb A. Denidni, "Multifunctional transparent electromagnetic surface based on solar cell for backscattering reduction," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4302-4306, 2019.
doi:10.1109/tap.2019.2911196 Google Scholar
11. Ghayekhloo, Alireza, Majid Afsahi, Ali A. Orouji, and Tayeb A. Denidni, "Triangle and aperiodic metasurfaces for bistatic backscattering engineering," Physica Status Solidi (b), Vol. 256, No. 10, 1900059, 2019.
doi:10.1002/pssb.201900059 Google Scholar
12. Denidni, Tayeb A., Yacouba Coulibaly, and Halim Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1043-1049, 2009.
doi:10.1109/tap.2009.2015809 Google Scholar
13. Karami, Farzad, Pejman Rezaei, Ali Amn-e-Elahi, and Ashkan Abolfathi, "An X-band substrate integrated waveguide fed patch array antenna: Overcoming low efficiency, narrow impedance bandwidth, and cross-polarization radiation challenges," IEEE Antennas and Propagation Magazine, Vol. 63, No. 5, 25-32, 2021.
doi:10.1109/map.2020.3043457 Google Scholar
14. Mehrabi, Mohammad, Hamid Rajabalipanah, Ali Abdolali, and Majid Tayarani, "Polarization-insensitive, ultra-broadband, and compact metamaterial-inspired optical absorber via wide-angle and highly efficient performances," Applied Optics, Vol. 57, No. 14, 3693-3703, 2018.
doi:10.1364/ao.57.003693 Google Scholar
15. Kiourti, Asimina, "RFID antennas for body-area applications: From wearables to implants," IEEE Antennas and Propagation Magazine, Vol. 60, No. 5, 14-25, 2018.
doi:10.1109/map.2018.2859167 Google Scholar
16. Jin, Cheng, Qihao Lv, Binchao Zhang, Jinlin Liu, Sining An, Zhongxia Simon He, and Zhongxiang Shen, "Ultra-wide-angle bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5673-5681, 2021.
doi:10.1109/tap.2021.3061144 Google Scholar
17. Hashemi, Soheil and Ali Abdolali, "Room shielding with frequency-selective surfaces for electromagnetic health application," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 291-298, 2017.
doi:10.1017/s1759078716000015 Google Scholar
18. Zarbakhsh, Saman, Mohammad Akbari, Mohammadmahdi Farahani, Alireza Ghayekhloo, Tayeb A. Denidni, and Abdel-Razik Sebak, "Optically transparent subarray antenna based on solar panel for CubeSat application," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 319-328, 2020.
doi:10.1109/tap.2019.2938740 Google Scholar
19. Yan, Mingbao, Shaobo Qu, Jiafu Wang, Jieqiu Zhang, Anxue Zhang, Song Xia, and Wenjie Wang, "A novel miniaturized frequency selective surface with stable resonance," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 639-641, 2014.
doi:10.1109/lawp.2014.2313067 Google Scholar
20. Lee, In-Gon and Ic-Pyo Hong, "Scalable frequency selective surface with stable angles of incidence on a thin flexible substrate," International Journal of Antennas and Propagation, Vol. 2016, No. 1, 6891065, 2016.
doi:10.1155/2016/6891065 Google Scholar
21. Gao, Meng, Seyed Mohamad Amin Momeni Hasan Abadi, and Nader Behdad, "A dual-band, inductively coupled miniaturized-element frequency selective surface with higher order bandpass response," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3729-3734, 2016.
doi:10.1109/tap.2016.2580181 Google Scholar
22. Ghosh, Saptarshi and Kumar Vaibhav Srivastava, "An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 218-220, 2017.
doi:10.1109/lmwc.2017.2661683 Google Scholar
23. Oraizi, Homayoon and Shahram Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/lawp.2011.2109030 Google Scholar
24. Bayatpur, F., "Metamaterial-inspired frequency-selective surfaces," The University of Michigan, MI, USA, 2009.
25. Bayatpur, Farhad and Kamal Sarabandi, "Single-layer high-order miniaturized-element frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/tmtt.2008.919654 Google Scholar
26. Ghosh, Saptarshi and Kumar Vaibhav Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 511-514, 2014.
doi:10.1109/lawp.2014.2369732 Google Scholar
27. Makimoto, M. and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application, Vol. 4, Vol. 4, Springer Science & Business Media, 2001.
28. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 7, 1078-1085, 1997.
doi:10.1109/22.598444 Google Scholar
29. Wang, Wensong, Qunsheng Cao, and Yuanjin Zheng, "Bandstop frequency-selective structures based on stepped-impedance loop resonators: Design, analysis, and measurement," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1053-1064, 2019.
doi:10.1109/tap.2018.2880011 Google Scholar
30. Goverdhanam, K., R. N. Simons, and L. P. B. Katehi, "Coplanar stripline components for high-frequency applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, 1725-1729, 1997.
doi:10.1109/22.641719 Google Scholar
31. Simons, R. N., N. I. Dib, and L. P. B. Katehi, "Modeling of coplanar stripline discontinuities," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 5, 711-716, 1996.
doi:10.1109/22.493924 Google Scholar
32. Zhu, Lei and Ke Wu, "Field-extracted lumped-element models of coplanar stripline circuits and discontinuities for accurate radiofrequency design and optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 4, 1207-1215, 2002.
doi:10.1109/22.993426 Google Scholar
33. Zhang, Jian-Cheng, Ying-Zeng Yin, and Jin-Ping Ma, "Frequency selective surfaces with fractal four legged elements," Progress In Electromagnetics Research Letters, Vol. 8, 1-8, 2009.
doi:10.2528/pierl08112301 Google Scholar
34. ANSYS, I., "ANSYS HFSS 2025," Computer soft-ware, Canonsburg, PA, USA. [Online]. Available: https://www.ansys.com/products/electronics/ansys-hfss, 2025.
35. Li, Huangyan and Qunsheng Cao, "Design and analysis of a controllable miniaturized tri-band frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 52, 105-112, 2015.
doi:10.2528/pierl14121803 Google Scholar
36. Li, Yi, Ruize Xu, Peng Ren, Baoyi Xu, Minrui Wang, Chen Chen, Keqing Chen, and Zheng Xiang, "Design of miniaturized and polarization insensitive frequency selective surface filter with large band ratio," Journal of Applied Physics, Vol. 137, No. 2, 023103, 2025.
doi:10.1063/5.0243684 Google Scholar
37. Kanagasabai, Malathi, Shini Ramadoss, Lavanya Viswanathan, M. Gulam Nabi Alsath, and Sandeep Kumar Palaniswamy, "A novel miniaturized swastika-based dual band-stop frequency selective surface," Waves in Random and Complex Media, 1-12, 2024.
doi:10.1080/17455030.2024.2444251 Google Scholar
38. Khan, Safiullah and Thomas F. Eibert, "A multifunctional metamaterial-based dual-band isotropic frequency-selective surface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 8, 4042-4051, Aug. 2018.
doi:10.1109/tap.2018.2835667 Google Scholar
39. Li, Qiannan, Qing Wang, Hui Zhang, Jian-Qiang Hou, and Jun Zhao, "A new miniaturized double stop-band frequency selective surface," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 1, 9-16, 2024.
doi:10.13052/2024.aces.j.390102 Google Scholar
40. Dey, Soumik, Sukomal Dey, and Shiban K. Koul, "Miniaturized dual stop band frequency selective surface with broadband linear co to cross polarization conversion ability," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 9, e22779, 2021.
doi:10.1002/mmce.22779 Google Scholar
41. Lira, Ruann Victor de Andrade, Bruno Sátiro da Silva, Antonio Luiz P. S. Campos, and Alfredo Gomes Neto, "A dual-band complementary frequency selective surface combining structures that provides narrow and wide stop-band frequency responses," Microwave and Optical Technology Letters, Vol. 65, No. 12, 3107-3112, 2023.
doi:10.1002/mop.33842 Google Scholar
42. Li, Jinping, Xinyu Hou, and Yonggang Xu, "An ultra-thin flexible double-layer dual-band frequency selective surface," Journal of Electronic Materials, Vol. 52, No. 1, 514-522, 2023.
doi:10.1007/s11664-022-10020-2 Google Scholar
43. Chomtong, P., P. Krachodnok, K. Bandudej, and P. Akkaraekthalin, "A multiband FSS director using aperture interdigital structure for wireless communication systems," IEEE Access, Vol. 10, 11206-11219, 2022.
doi:10.1109/access.2022.3144642 Google Scholar
44. Wang, Hui, Shaobo Qu, Jiafu Wang, Mingbao Yan, and Lin Zheng, "Dual-band miniaturised FSS with stable resonance frequencies of 3.4/4.9 GHz for 5G communication systems applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 1, 1-6, 2020.
doi:10.1049/iet-map.2018.6145 Google Scholar