Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-08-24
Torque Ripple Reduction of the Anti-Disturbance Sliding Mode Deadbeat Control for Switched Reluctance Motors
By
Progress In Electromagnetics Research C, Vol. 159, 56-64, 2025
Abstract
To improve the current and torque regulation performance of the traditional deadbeat predictive current control (DPCC) for switched reluctance motors under model parameter mismatch, this article proposes an improved DPCC method based on the sliding mode strategy. First, a dedicated torque-current converter is formulated to achieve precise transformation of electromagnetic torque into corresponding q-axis current references. Second, a unified anti-disturbance sliding mode control compensation scheme is introduced into both the torque-current converter and the deadbeat controller to mitigate the negative effects of model parameter mismatch on current and torque control. This integration achieves indirect torque control through phase current modulation, effectively reducing torque ripple. Furthermore, the stability of the controller under model parameter mismatch conditions is rigorously demonstrated through Lyapunov stability analysis. Finally, the effectiveness of the proposed control method is demonstrated through simulation results, and its significant superiority in current control performance and torque ripple suppression is shown.
Citation
Shining Lin, Aide Xu, Xiong Su, and Lidong Dong, "Torque Ripple Reduction of the Anti-Disturbance Sliding Mode Deadbeat Control for Switched Reluctance Motors," Progress In Electromagnetics Research C, Vol. 159, 56-64, 2025.
doi:10.2528/PIERC25071904
References

1. Cheng, He, Shuo Liao, and Wenju Yan, "Development and performance analysis of segmented-double-stator switched reluctance machine," IEEE Transactions on Industrial Electronics, Vol. 69, No. 2, 1298-1309, 2022.
doi:10.1109/tie.2021.3059554

2. Fang, Gaoliang, Filipe P. Scalcon, Dianxun Xiao, Rodrigo P. Vieira, Hilton A. Gründling, and Ali Emadi, "Advanced control of switched reluctance motors (SRMs): A review on current regulation, torque control and vibration suppression," IEEE Open Journal of The Industrial Electronics Society, Vol. 2, 280-301, 2021.
doi:10.1109/ojies.2021.3076807

3. Wang, Shun-Chung and Yi-Hwa Liu, "A modified PI-like fuzzy logic controller for switched reluctance motor drives," IEEE Transactions on Industrial Electronics, Vol. 58, No. 5, 1812-1825, 2011.
doi:10.1109/tie.2010.2058074

4. Song, Shoujun, Jialiang Liu, Yong Zhao, Lefei Ge, Ruiqing Ma, and Weiguo Liu, "High-dynamic four-quadrant speed adjustment of switched reluctance machine with torque predictive control," IEEE Transactions on Industrial Electronics, Vol. 69, No. 8, 7733-7743, 2022.
doi:10.1109/tie.2021.3108707

5. Ye, Jin, Pawel Malysz, and Ali Emadi, "A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 2, 381-394, 2015.
doi:10.1109/jestpe.2014.2357717

6. Zhang, Xing, Qingqing Yang, Mingyao Ma, Zhengyu Lin, and Shuying Yang, "A switched reluctance motor torque ripple reduction strategy with deadbeat current control and active thermal management," IEEE Transactions on Vehicular Technology, Vol. 69, No. 1, 317-327, 2020.
doi:10.1109/tvt.2019.2955218

7. Ahmad, Syed Shahjahan, Mouli Thirumalasetty, and G. Narayanan, "Predictive current control of switched reluctance machine for accurate current tracking to enhance torque performance," IEEE Transactions on Industry Applications, Vol. 60, No. 1, 1837-1848, 2024.
doi:10.1109/tia.2023.3325306

8. Valencia, Diego F., Rasul Tarvirdilu-Asl, Cristian Garcia, Jose Rodriguez, and Ali Emadi, "A review of predictive control techniques for switched reluctance machine drives. Part I: Fundamentals and current control," IEEE Transactions on Energy Conversion, Vol. 36, No. 2, 1313-1322, 2021.
doi:10.1109/tec.2020.3047983

9. Ge, Lefei, Zizhen Fan, Nan Du, Jiale Huang, Dianxun Xiao, and Shoujun Song, "Model predictive torque and force control for switched reluctance machines based on online optimal sharing function," IEEE Transactions on Power Electronics, Vol. 38, No. 10, 12359-12364, 2023.
doi:10.1109/tpel.2023.3295577

10. Sahoo, S. K., S. K. Panda, and J. X. Xu, "Iterative learning-based high-performance current controller for switched reluctance motors," IEEE Transactions on Energy Conversion, Vol. 19, No. 3, 491-498, 2004.
doi:10.1109/tec.2004.832048

11. Xia, Zekun, Berker Bilgin, Shamsuddeen Nalakath, and Ali Emadi, "A new torque sharing function method for switched reluctance machines with lower current tracking error," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10612-10622, 2021.
doi:10.1109/tie.2020.3037987

12. Alharkan, Hamad, Sepehr Saadatmand, Mehdi Ferdowsi, and Pourya Shamsi, "Optimal tracking current control of switched reluctance motor drives using reinforcement Q-learning scheduling," IEEE Access, Vol. 9, 9926-9936, 2021.
doi:10.1109/access.2021.3050167

13. Xia, Zekun, Gaoliang Fang, Dianxun Xiao, Ali Emadi, and Berker Bilgin, "An online torque sharing function method involving current dynamics for switched reluctance motor drives," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 534-548, 2023.
doi:10.1109/tte.2022.3183171

14. Peng, Fei, Jin Ye, and Ali Emadi, "A digital PWM current controller for switched reluctance motor drives," IEEE Transactions on Power Electronics, Vol. 31, No. 10, 7087-7098, 2016.
doi:10.1109/tpel.2015.2510028

15. Liu, Di, Yunsheng Fan, Jian Liu, Guofeng Wang, and Dexin Sun, "Deadbeat indirect torque control of switched reluctance motors with current vector decomposition," Journal of Electrical Engineering & Technology, Vol. 19, No. 8, 4953-4968, 2024.
doi:10.1007/s42835-024-01891-y

16. Liu, Di, Yunsheng Fan, Jian Liu, Guofeng Wang, and Linhao Sheng, "Robust deadbeat predictive current control for unipolar sinusoidal excited SRM with multi-parameter mismatch compensation," Scientific Reports, Vol. 14, No. 1, 23746, 2024.
doi:10.1038/s41598-024-73517-2

17. Liu, Jian, Guofeng Wang, Di Liu, and Yunsheng Fan, "An improved deadbeat control scheme for unipolar sinusoidal current excited switched reluctance motor drives," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 11, No. 2, 1589-1603, 2023.
doi:10.1109/jestpe.2022.3222651

18. Jiang, Yajie, Wei Xu, Chaoxu Mu, and Yi Liu, "Improved deadbeat predictive current control combined sliding mode strategy for PMSM drive system," IEEE Transactions on Vehicular Technology, Vol. 67, No. 1, 251-263, 2018.
doi:10.1109/tvt.2017.2752778

19. Nakao, N. and K. Akatsu, "Vector control specialized for switched reluctance motor drives," 2014 International Conference on Electrical Machines (ICEM), 943-949, Berlin, Germany, 2014.
doi:10.1109/ICELMACH.2014.6960294

20. Ding, Wen, Jialing Li, and Jiangnan Yuan, "An improved model predictive torque control for switched reluctance motors with candidate voltage vectors optimization," IEEE Transactions on Industrial Electronics, Vol. 70, No. 5, 4595-4607, 2023.
doi:10.1109/tie.2022.3190895