Vol. 159
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-08
A Miniaturized CPW-Fed Flexible Antenna Sensor for Implantable Breast Tumour Detection with Wireless Powering
By
Progress In Electromagnetics Research C, Vol. 159, 202-209, 2025
Abstract
Early detection of breast tumour is crucial for reducing the likelihood of mastectomy. To monitor the dielectric changes in breast tissue caused by the formation of tumorous cells, a novel biocompatible implantable antenna sensor is proposed. This flexible implant, measuring just 5 mm × 5 mm × 0.25 mm, operates in the ISM band at 2.45 GHz for real-time breast tumour detection. It is wirelessly powered via Wireless Power Transfer (WPT) operating in the mid-band range of 1.2-1.4 GHz. The antenna achieves an ultra-compact volume of 12.5 mm3 through closed-loop structures and meandered strips that enhance radiation efficiency. Inside abnormal breast tissue with a relative permittivity (εr) of 52.7, the antenna demonstrates a reflection coefficient of -17 dB and offers a -10 dB bandwidth of 330 MHz. The sensor is activated when the tissue permittivity rises above 15, achieving a maximum gain of -10 dBi. The antenna has been fabricated, and the simulated results have been validated in-vivo. This design enables proactive detection of tumour cell formation within breast tissue, allowing treatment before it spreads. It is particularly suitable for individuals with a genetic predisposition to breast tumour, offering continuous monitoring for early intervention.
Citation
Samuelraj Chrysolite, Suresh Dhanu Shree, and Guruvayurappan Venika, "A Miniaturized CPW-Fed Flexible Antenna Sensor for Implantable Breast Tumour Detection with Wireless Powering," Progress In Electromagnetics Research C, Vol. 159, 202-209, 2025.
doi:10.2528/PIERC25072802
References

1. Kim, Hyeonseok, Bruno Rigo, Gabriella Wong, Yoon Jae Lee, and Woon-Hong Yeo, "Advances in wireless, batteryless, implantable electronics for real-time, continuous physiological monitoring," Nano-Micro Letters, Vol. 16, No. 1, 52, 2024.
doi:10.1007/s40820-023-01272-6

2. Nithiyanandam, Vijayanandam and Vidhya Sampath, "Approach-based analysis on wireless power transmission for bio-implantable devices," Applied Sciences, Vol. 13, No. 1, 415, 2023.
doi:10.3390/app13010415

3. Mahmud, Sultan, Ali Nezaratizadeh, Alfredo Bayu Satriya, Yong-Kyu Yoon, John S. Ho, and Adam Khalifa, "Harnessing metamaterials for efficient wireless power transfer for implantable medical devices," Bioelectronic Medicine, Vol. 10, No. 1, 7, 2024.
doi:10.1186/s42234-023-00136-z

4. Khaleghi, Ali, Aminolah Hasanvand, and Ilangko Balasingham, "Design and implementation of a hybrid wireless power and communication system for medical implants," 2023 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 52-54, Leuven, Belgium, 2023.
doi:10.1109/IMBioC56839.2023.10305096

5. Wang, Wei, Zhanghao Yu, Yiwei Zou, Joshua E. Woods, Prahalad Chari, Yumin Su, Jacob T. Robinson, and Kaiyuan Yang, "Omnidirectional wireless power transfer for millimetric magnetoelectric biomedical implants," IEEE Journal of Solid-State Circuits, Vol. 59, No. 11, 3599-3611, 2024.
doi:10.1109/jssc.2024.3464533

6. Omi, Asif Iftekhar, Anyu Jiang, and Baibhab Chatterjee, "A systematic method for optimum biomedical wireless power transfer using inductive links in area-constrained implants," ArXiv Preprint ArXiv:2501.08766, 2025.
doi:10.48550/arXiv.2501.08766

7. Leena, Vishnupriya and Nikhil Kumar, "Quasi crystal based circular patch antenna with artificial magnetic conductor for breast cancer detection," ArXiv Preprint ArXiv:2502.16269, 2025.
doi:10.48550/arXiv.2502.16269

8. Huda, S. M. Asiful, Muhammad Yeasir Arafat, and Sangman Moh, "Wireless power transfer in wirelessly powered sensor networks: A review of recent progress," Sensors, Vol. 22, No. 8, 2952, 2022.
doi:10.3390/s22082952

9. Zhang, Jungang, Rupam Das, Jinwei Zhao, Nosrat Mirzai, John Mercer, and Hadi Heidari, "Battery-free and wireless technologies for cardiovascular implantable medical devices," Advanced Materials Technologies, Vol. 7, No. 6, 2101086, 2022.
doi:10.1002/admt.202101086

10. Hamza, Musa N., Mohammad Tariqul Islam, and Slawomir Koziel, "Advanced sensor for non-invasive breast cancer and brain cancer diagnosis using antenna array with metamaterial-based AMC," Engineering Science and Technology, An International Journal, Vol. 56, 101779, 2024.
doi:10.1016/j.jestch.2024.101779

11. Mohan, Archana and Niraj Kumar, "Implantable antennas for biomedical applications: A systematic review," BioMedical Engineering OnLine, Vol. 23, No. 1, 87, 2024.
doi:10.1186/s12938-024-01277-1

12. Smida, Jamel, Mohamed Karim Azizi, Anandh Sam Chandra Bose, and Mohamed I. Waly, "A compact implantable multiple-input-multiple-output antenna for biotelemetry and sensing applications," Sensors, Vol. 25, No. 11, 3323, 2025.
doi:10.3390/s25113323

13. Jasim, Mosab, Ahmed Jamal Abdullah Al-Gburi, Mehwish Hanif, Zaheer Ahmed Dayo, Mohd Muzafar Ismail, and Zahriladha Zakaria, "An extensive review on implantable antennas for biomedical applications: Health considerations, geometries, fabrication techniques, and challenges," Alexandria Engineering Journal, Vol. 112, 110-139, 2025.
doi:10.1016/j.aej.2024.10.105

14. Hazrati Marangalou, Amin, Miguel Gonzalez, Nathaniel Reppucci, and Ulkuhan Guler, "A design review for biomedical wireless power transfer systems with a three-coil inductive link through a case study for NICU applications," Electronics, Vol. 13, No. 19, 3947, 2024.
doi:10.3390/electronics13193947

15. Shaw, Tarakeswar, Bappaditya Mandal, Gopinath Samanta, Thiemo Voigt, Debasis Mitra, and Robin Augustine, "Rotation insensitive implantable wireless power transfer system for medical devices using metamaterial-polarization converter," Scientific Reports, Vol. 14, No. 1, 19688, 2024.
doi:10.1038/s41598-024-70591-4

16. Rana, Md. Masud, Md. Ariful Islam, and Ibrahim M. Mehedi, "Dual-band implantable antenna loaded with patch slots for wireless biotelemetry systems," Progress In Electromagnetics Research C, Vol. 141, 151-162, 2024.
doi:10.2528/PIERC23112003

17. Yan, Xiaoheng, Jinshu Yao, Weihua Chen, and Yuhang Song, "Wireless power transfer system for cardiac pacemakers based on multi-coil series magnetic integration," Progress In Electromagnetics Research C, Vol. 143, 87-98, 2024.
doi:10.2528/PIERC24031301

18. Fernandez-Munoz, Miguel, Mohamed Missous, Mohammadreza Sadeghi, Pablo Luis Lopez-Espi, Rocio Sanchez-Montero, Juan Antonio Martinez-Rojas, and Efren Diez-Jimenez, "Fully integrated miniaturized wireless power transfer rectenna for medical applications tested inside biological tissues," Electronics, Vol. 13, No. 16, 3159, 2024.
doi:10.3390/electronics13163159

19. Al-Gburi, Rasool M., Mohammad Alibakhshikenari, Bal S. Virdee, Teba M. Hameed, Dion Mariyanayagam, Sandra Fernando, Innocent Lubangakene, Yi Tang, Salah Uddin Khan, and Taha A. Elwi, "Microwave-based breast cancer detection using a high-gain Vivaldi antenna and metasurface neural network approach for medical diagnostics," Frequenz, Vol. 79, No. 7-8, 311-325, 2025.
doi:10.1515/freq-2024-0190

20. Gabriel, C., S. Gabriel, and Y. E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine & Biology, Vol. 41, No. 11, 2231, 1996.
doi:10.1088/0031-9155/41/11/001

21. Safety, Electromagnetic, IEEE C95.7/DRAFT, 2005.