Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-09-11
Design of a Miniaturized Dual Notched UWB Bandpass Filter Using Meander Resonator with C-Band Interference Suppression Capability
By
Progress In Electromagnetics Research M, Vol. 135, 1-10, 2025
Abstract
This article proposes a miniaturized dual notched ultrawide bandpass filter (BPF) for ultra-wideband (UWB) indoor applications. The initial operational spectrum recognition is realized through the resonances of multiple mode resonator (MMR). Then both the passband and stopband characteristics are improved substantially by mounting distinctly shaped meander resonators cascaded with open loop ring resonator on the MMR. Further, the interdigital coupled lines are also meandered to contribute in filter size reduction along with tightening the coupling between the effective filter structure and input/output ports. The elimination of interfering signals within the passband caused by C-band satellite downlink and fixed satellite service uplink is facilitated by two sharp notches at 3.76 GHz and 6.82 GHz frequencies. Concurrently, this miniaturized filter is also characterized by its wide passband of 6.42 GHz with fractional bandwidth (FBW) 110.88%, good selectivity of 0.85, minimal insertion loss differing between 0.44 dB and 0.85 dB, wide upper stopband of 5.11 GHz, etc. ensuring its suitability as a practical UWB filter. The design is fabricated and measured to compare with the simulated outcomes and validated by the obtained resemblance between the measured and simulated filter outputs.
Citation
Piali Chakraborty, Jyoti Ranjan Panda, Arindam Deb, and Jibendu Sekhar Roy, "Design of a Miniaturized Dual Notched UWB Bandpass Filter Using Meander Resonator with C-Band Interference Suppression Capability," Progress In Electromagnetics Research M, Vol. 135, 1-10, 2025.
doi:10.2528/PIERM25072901
References

1. Federal Communications Commission "Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems," First Report and Order, FCC 02. V48, Apr. 2002.

2. Abdel-Jabbar, Hana, Ahmed Sabri Kadhim, Ameer L. Saleh, Yasir I. A. Al-Yasir, Naser Ojaroudi Parchin, and Raed A. Abd-Alhameed, "Design and optimization of microstrip filtering antenna with modified shaped slots and SIR filter to improve the impedance bandwidth," Telkomnika, Vol. 18, No. 1, 545-551, 2020.
doi:10.12928/telkomnika.v18i1.13532

3. Boddu, Ramesh, Arindam Deb, and Jibendu Sekhar Roy, "Design of a microstrip filtering antenna for 4G and 5G wireless networks," Journal of Telecommunications and Information Technology, Vol. 2023, No. 2, 78-83, 2023.
doi:10.26636/jtit.2023.171423

4. Boddu, R., A. Deb, and J. S. Roy, "Design of a compact microstrip filtenna for miniaturized devices to access Internet of Things using long term evolution," Advanced Electromagnetics, Vol. 12, No. 4, 10-16, Dec. 2023.
doi:10.7716/aem.v12i4.2111

5. Shaman, Hussein and Jia-Sheng Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 121-123, Feb. 2007.
doi:10.1109/LMWC.2006.890335

6. Gomez-Garcia, R. and J. I. Alonso, "Systematic method for the exact synthesis of ultra-wideband filtering responses using high-pass and low-pass sections," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 10, 3751-3764, Oct. 2006.
doi:10.1109/TMTT.2006.882883

7. Chu, Qing-Xin and Xu-Kun Tian, "Design of UWB bandpass filter using stepped-impedance stub-loaded resonator," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 9, 501-503, Sep. 2010.
doi:10.1109/LMWC.2010.2053024

8. Baik, Jung-Woo, Tae-Hak Lee, and Young-Sik Kim, "UWB bandpass filter using microstrip-to-CPW transition with broadband balun," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 846-848, 2007.
doi:10.1109/LMWC.2007.910480

9. Ghosh, Prabir, Abhik Gorai, Subhrakanta Behera, and Rowdra Ghatak, "Design of compact UWB antenna using characteristic mode analysis and its quad-port MIMO realization with novel isolation technique," Journal of Electromagnetic Waves and Applications, Vol. 38, No. 4, 443-459, 2024.
doi:10.1080/09205071.2024.2315590

10. Kumari, Puja, Pankaj Sarkar, and Rowdra Ghatak, "A multi‐stub loaded compact UWB BPF with a broad notch band and extended stopband characteristics," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 4, e22138, 2020.
doi:10.1002/mmce.22138

11. Sangam, Ramanand Sagar and Rakhesh Singh Kshetrimayum, "Notched UWB filter using exponential tapered impedance line stub loaded microstrip resonator," The Journal of Engineering, Vol. 2018, No. 9, 768-772, 2018.
doi:10.1049/joe.2018.5071

12. El Bakali, H. El Omari, H. Elftouh, A. Farkhsi, A. Zakriti, and M. El Ouahabi, "Design of a super compact UWB filter based on hybrid technique with a notch band using open circuited stubs," Advanced Electromagnetics, Vol. 9, No. 3, 39-46, Dec. 2020.
doi:10.7716/aem.v9i3.1521

13. Song, Yonghui, Guo-Min Yang, and Wen Geyi, "Compact UWB bandpass filter with dual notched bands using defected ground structures," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 4, 230-232, Apr. 2014.
doi:10.1109/LMWC.2013.2296291

14. Ghazali, Abu Nasar, Mohd Sazid, and Srikanta Pal, "A miniaturized low-cost microstrip-to-coplanar waveguide transition-based ultra-wideband bandpass filter with multiple transmission zeros," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3662-3667, 2020.
doi:10.1002/mop.32482

15. Chakraborty, Piali, Jyoti Ranjan Panda, and Arindam Deb, "Design of a novel stub loaded asymmetric rectangular ring resonator based ultra-wide notched-band bandpass filter," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 18, 2614-2627, 2022.
doi:10.1080/09205071.2022.2101387

16. Chakraborty, Piali, Jyoti R. Panda, Arindam Deb, Sudhakar Sahu, and Jibendu S. Roy, "Design of a miniaturized split-ring resonator based UWB notched bandpass filter," Progress In Electromagnetics Research C, Vol. 134, 27-38, 2023.
doi:10.2528/PIERC23050801

17. Shome, Partha Pratim, Taimoor Khan, Shiban Kishan Koul, and Yahia M. M. Antar, "Compact UWB‐to‐C band reconfigurable filtenna based on elliptical monopole antenna integrated with bandpass filter for cognitive radio systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 10, 1079-1088, 2020.
doi:10.1049/iet-map.2019.0819

18. Neogi, Anirban and Jyoti Ranjan Panda, "A miniaturised negative group delay triple pass band filter using half wavelength meander step impedance resonator," Progress In Electromagnetics Research Letters, Vol. 101, 55-62, 2021.
doi:10.2528/PIERL21092106

19. Sharma, Ravindra Kumar and Mukesh Arora, "Meander line EBG based multiband antenna for WLAN and WiMAX application," International Journal of Modern Communication Technologies & Research (IJMCTR), Vol. 5, No. 11, 265099, 2017.

20. Elamin, Nassrin Ibrahim Mohamed, Tharek Abd Rahman, and Amuda Yusuf Abdulrahman, "New adjustable slot meander patch antenna for 4G handheld devices," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1077-1080, 2013.
doi:10.1109/LAWP.2013.2280029

21. Lee, Tae-Hyeon, Ki-Cheol Yoon, and Kwang Gi Kim, "Miniaturized dual-band bandpass filter using T-shaped line based on stepped impedance resonator with meander line and folded structure," Electronics, Vol. 11, No. 2, 219, 2022.
doi:10.3390/electronics11020219

22. Ansys Inc., HFSS: High Frequency Structure Simulator, ver. 13, Canonsburg, PA, USA, 2010.

23. Zhu, Lei, Sheng Sun, and Rui Li, Microwave Bandpass Filters for Wideband Communications, John Wiley & Sons, 2011.
doi:10.1002/9781118197981

24. Zheng, Xuemei, Yuwen Pan, and Tao Jiang, "UWB bandpass filter with dual notched bands using T-shaped resonator and L-shaped defected microstrip structure," Micromachines, Vol. 9, No. 6, 280, 2018.
doi:10.3390/mi9060280

25. Weng, Min-Hang, Che-Wei Hsu, Siang-Wen Lan, and Ru-Yuan Yang, "An ultra-wideband bandpass filter with a notch band and wide upper bandstop performances," Electronics, Vol. 8, No. 11, 1316, 2019.
doi:10.3390/electronics8111316

26. Xu, Z., "UWB bandpass SSL filter with an adjustable notched band and four transmission zeros," Electronics Letters, Vol. 57, No. 24, 930-932, 2021.
doi:10.1049/ell2.12306

27. Udhayanan, Senathipathi and Krishnan Shambavi, "Compact single notch UWB bandpass filter with metamaterial and SIW technique," Progress In Electromagnetics Research Letters, Vol. 117, 41-46, 2024.
doi:10.2528/PIERL23113004

28. Wei, Guangyong, Yun Xiu Wang, Jie Liu, Yang Gao, and Xiao Tao Yao, "Highly selective UWB BPF with dual notched bands using split ring resonator," Progress In Electromagnetics Research C, Vol. 136, 51-60, 2023.
doi:10.2528/PIERC23060706

29. Louazene, Hassiba, Mouloud Challal, and M'hamed Boulakroune, "Design and fabrication of a compact UWB BPF with notch-band and wide stopband using dual MMRs and DGS," Progress In Electromagnetics Research Letters, Vol. 109, 75-83, 2023.
doi:10.2528/PIERL22112004

30. Zhao, Guangxiu, Chen Li, Minquan Li, Pingjuan Zhang, Yajing Yan, Xiaming Mo, and Ziyun Tu, "A novel miniaturized image rejection bandpass filter basing on stepped-impedance resonators," Progress In Electromagnetics Research Letters, Vol. 112, 27-34, 2023.
doi:10.2528/PIERL23063006

31. Ji, Wusheng, Hanglin Du, Yingyun Tong, Xiaochun Ji, and Liying Feng, "Filter design based on multilayer wide side coupling structure," Progress In Electromagnetics Research M, Vol. 128, 31-39, 2024.
doi:10.2528/PIERM24030604

32. Ahmed, Hayder S. and Aqiel Na'ma Almamori, "Design of a triple-band metamaterial bandpass filter utilizing modified-minkowski fractal geometry," Progress In Electromagnetics Research C, Vol. 154, 159-167, 2025.
doi:10.2528/PIERC25021810