Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-28
Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motor Based on IEWT-SSA-ELM
By
Progress In Electromagnetics Research C, Vol. 161, 88-98, 2025
Abstract
Aiming at the problems of weak distinctiveness and low diagnostic accuracy of permanent magnet synchronous motor (PMSM) demagnetization faults, a local demagnetization fault diagnosis method for PMSM based on Improved Empirical Wavelet Transform (IEWT) combined with Sparrow Search Algorithm (SSA) optimized Extreme Learning Machine (ELM) is proposed. Taking the radial leakage magnetic signal on the motor surface as the research object, the leakage magnetic experimental data under 15 different demagnetization states are extracted. To solve the problem of unreasonable spectrum segmentation in the EWT method, an adaptive decomposition with improved frequency band division is performed according to the special spectrum trend of PMSM leakage magnetic signals. Then, the normalized energy values of each intrinsic mode function (IMF) are calculated to form the corresponding feature vectors, which are input into the ELM model optimized by the SSA algorithm for demagnetization state identification. Experimental results show that the method based on IEWT-SSA-ELM has a significant improvement in fault identification effect compared with the unimproved and unoptimized methods.
Citation
Dehai Chen, Jinpeng Xu, Zhijun Li, and Hao Gong, "Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motor Based on IEWT-SSA-ELM," Progress In Electromagnetics Research C, Vol. 161, 88-98, 2025.
doi:10.2528/PIERC25072903
References

1. Li, Yuan-Jiang, Zhou-Lei Zhang, Meng-Han Li, Hai-Feng Wei, and Yi Zhang, "Fault diagnosis of inter-turn short circuit of permanent magnet synchronous motor based on deep learning," Electric Machines and Control, Vol. 24, No. 9, 173-180, 2020.
doi:10.15938/j.emc.2020.09.019

2. Gritli, Yasser, Michele Mengoni, Gabriele Rizzoli, Claudio Rossi, Angelo Tani, and Domenico Casadei, "Rotor magnet demagnetisation diagnosis in asymmetrical six-phase surface-mounted AC PMSM drives," IET Electric Power Applications, Vol. 14, No. 10, 1747-1755, 2020.
doi:10.1049/iet-epa.2019.0222

3. Li, Yongjian, Haosen Li, Hui Geng, Xuehai Gong, and Fuyao Yang, "Measurement and analysis of hysteresis loss of Nd-Fe-B permanent magnet under superheated loss of magnetism," Electric Power, Vol. 53, No. 10, 50-57, 2020.

4. Jung, Jae-Woo, Byeong-Hwa Lee, Kyu-Seob Kim, and Sung-Il Kim, "Interior permanent magnet synchronous motor design for eddy current loss reduction in permanent magnets to prevent irreversible demagnetization," Energies, Vol. 13, No. 19, 5082, 2020.
doi:10.3390/en13195082

5. Xie, Y., W. Xin, W. Cai, et al. "Electromagnetic performance and electromagnetic vibration noise analysis of different rotor topologies of interior permanent magnet synchronous motor," Electric Machines and Control, Vol. 27, No. 1, 110-119, 2023.
doi:10.15938/j.emc.2023.01.011

6. Zhang, Yecheng, Guohai Liu, and Qian Chen, "Discrimination of interturn short-circuit and local demagnetization in permanent magnet synchronous motor based on current fluctuation characteristics," Transactions of China Electrotechnical Society, Vol. 37, No. 7, 1634-1643, 2022.
doi:10.19595/j.cnki.1000-6753.tces.211463

7. Chen, H., C. X. Gao, X. C. Sang, et al. "Toroidal yoke search-coil-based method for locating fault in PMSM with local demagnetization fault," Electric Machines and Control, Vol. 27, No. 4, 97, 2023.
doi:10.15938/j.emc.2023.04.010

8. Zhang, Xiaoguang, Kang Yan, and Wenhan Zhang, "Hybrid double vector model predictive control for open-winding permanent magnet synchronous motor with common DC bus," Transactions of China Electrotechnical Society, Vol. 36, No. 1, 96-106, 2021.
doi:10.19595/j.cnki.1000-6753.tces.200765

9. Zhao, K. H., A. J. Leng, J. He, et al. "Reconstruction of demagnetization fault of six-phase permanent magnet synchronous motor based on super-twisting sliding-mode observer," Journal of Electronic Measurement and Instrumentation, Vol. 34, No. 10, 123-131, 2020.
doi:10.13382/j.jemi.B2002946

10. Ding, S. C., W. He, J. Hang, et al. "Uniform demagnetization fault diagnosis for PMSM based on radial air-gap flux density and stator current," Proceedings of the CSEE, Vol. 44, No. 1, 332-340, 2024.
doi:10.13334/j.0258-8013.pcsee.221975

11. Gao, C. X., B. K. Li, H. Chen, et al. "Local demagnetization fault diagnosis of permanent magnet synchronous motor based on half-period back EMF residual," Electric Machines and Control, Vol. 27, No. 7, 183-194, 2023.
doi:10.15938/j.emc.2023.07.019

12. Torregrossa, Dimitri, Amir Khoobroo, and Babak Fahimi, "Prediction of acoustic noise and torque pulsation in PM synchronous machines with static eccentricity and partial demagnetization using field reconstruction method," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 934-944, 2012.
doi:10.1109/tie.2011.2151810

13. Urresty, Julio-César, Jordi-Roger Riba, Miguel Delgado, and Luís Romeral, "Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component," IEEE Transactions on Energy Conversion, Vol. 27, No. 1, 42-51, 2012.
doi:10.1109/tec.2011.2176127

14. Zhou, S. W., Y. Q. Yu, H. X. Gao, Q. P. Chen, W. Wang, and P. Liu, "Diagnosis of local demagnetization fault in PMSM based on EWT-HHT and radial leakage field," Journal of Magnetic Materials and Devices, Vol. 53, No. 5, 97-104, 2022.
doi:10.19594/j.cnki.09.19701.2022.05.017

15. Qiao, W. D., "Research of fault diagnosis model for electric vehicle permanent magnet synchronous motor on BP neural network," Journal of Shijiazhuang University, Vol. 26, No. 6, 50-55, 2024.
doi:10.3969/j.issn.1673-1972.2024.06.007

16. Li, Zhonghai, Yang Cao, and Xiaohong Xing, "Demagnetization model design of PMSM based on maxwell 2D and simplorer," Fire Control & Command Control, Vol. 41, No. 7, 135-139, 2016.
doi:10.3969/j.issn.1002-0640.2016.07.031

17. Xie, Fengyun, Yongqi Jiang, Qian Xiao, Yu Fu, Erhua Wang, and Yi Liu, "VMD-LSSVM fault identification method for rolling bearings," Mechanical Science and Technology for Aerospace Engineering, Vol. 42, No. 9, 1482-1489, 2023.
doi:10.13433/j.cnki.1003-8728.20220043

18. Zhang, Dan, J. W. Zhao, F. Dong, J. C. Song, S. K. Dou, H. Wang, and F. Xie, "Partial demagnetization fault diagnosis research of permanent magnet synchronous motors based on the PNN algorithm," Proceedings of the CSEE, Vol. 39, No. 1, 296-306, 2019.
doi:10.13334/j.0258-8013.pcsee.172531

19. Liu, Xiao-Yue, Ze-Ming Zhang, Li-Guo Zhao, Fan-Wei Meng, and Yi Zhang, "Fault diagnosis of wind turbine gearbox based on CEEMDAN sample entropy and SSA-ELM," Modular Machine Tool & Automatic Manufacturing Technique, Vol. 63, No. 9, 126-130, 2022 (in Chinese).
doi:10.13462/j.cnki.mmtamt.2022.09.030

20. Liu, S., J. C. Song, S. L. Lu, et al. "Demagnetization fault diagnosis research of DPPMSLM based on gray texture feature extraction and CS-SNN," Proceedings of the CSEE, Vol. 43, No. 16, 6464-6473, 2023.
doi:10.13334/j.0258-8013.pcsee.220878

21. Zhang, Meng and Yinquan Yu, "Permanent magnet synchronous motor demagnetization fault diagnosis based on leakage radial magnetic density," Journal of Physics: Conference Series, Vol. 2708, No. 1, 012008, Nanning, China, 2024.
doi:10.1088/1742-6596/2708/1/012008

22. Gilles, Jérôme, "Empirical wavelet transform," IEEE Transactions on Signal Processing, Vol. 61, No. 16, 3999-4010, 2013.
doi:10.1109/tsp.2013.2265222

23. Wang, H., "Research on rolling bearing fault diagnosis method based on improved empirical wavelet transform," Yanshan University, Hebei, China, 2020.

24. Chen, Xiaojuan, Xiaoyu Zheng, Shengda Wang, and Danni Liu, "SSA-ELM-based optical cable fault pattern recognition method," Laser Journal, Vol. 43, No. 5, 49-53, 2022.

25. Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, Vol. 70, No. 1-3, 489-501, 2006.
doi:10.1016/j.neucom.2005.12.126

26. Li, Meng-Yao, Qiang Zhou, and Zhong-Qing Yu, "Gearbox fault diagnosis based on kernel principal component analysis and optimized ELM," Modular Machine Tool & Automatic Manufacturing Technique, No. 4, 87-90, 2021 (in Chinese).
doi:10.13462/j.cnki.mmtamt.2021.04.021