Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-04
Stability and Homogeneity of Muscle Phantom for Radiation Exposure from 5G Signals
By
Progress In Electromagnetics Research C, Vol. 161, 150-158, 2025
Abstract
The increasing deployment of 5G wireless technologies has raised the need for accurate, tissue equivalent phantoms to explore electromagnetic (EM) wave interactions with human body organs. This paper investigates stability and homogeneity of a low-cost, easy-to-fabricate human muscle phantom exposed to radiation exposure from 5G signals at frequencies of 700 MHz, 2.4 GHz, 3.5 GHz and 20 GHz. The phantom was formulated using agar, polyethylene powder, sodium chloride, xanthan gum, sodium dehydro-acetate, and deionized water. Its permittivity and conductivity were measured using a vector network analyzer (VNA) over a 45-day period under low (2-5°C) and room temperature (27°C) storage. The results showed that the phantom was most homogenous at 20 GHz with the standard deviation (SD) of 0.51033 and the relative standard deviation (RSD) of 1.67%. For conductivity, the phantom demonstrated good homogeneity. However, it was not aligning to the corresponding real human muscle conductivity. The most homogenous conductivity was observed at 2.4 GHz with the SD and RSD of 0.06194 and 2.31% respectively. In terms of stability, relative permittivity was most stable at 20 GHz under room temperature conditions, with a maximum deviation of 21%. Stability of conductivity performance, on the other hand, was best maintained at 2.4 GHz under room temperature, where the highest observed deviation was 53%. The findings highlight the potential of using low-cost materials to fabricate phantoms with stable electromagnetic properties suitable for wireless exposure studies, although further optimization is needed for accurate conductivity matching.
Citation
Nur Farah Afiqah Asmadi, Aduwati Sali, Nurul Huda Abd Rahman, Suriati Paiman, and Muhammad Zamir Mohyedin, "Stability and Homogeneity of Muscle Phantom for Radiation Exposure from 5G Signals," Progress In Electromagnetics Research C, Vol. 161, 150-158, 2025.
doi:10.2528/PIERC25073104
References

1. Butković, Ivan, Silvijo Vince, Martina Lojkić, Ivan Folnožić, Suzana Milinović Tur, Marinko Vilić, Krešimir Malarić, Velimir Berta, Marko Samardžija, Mario Kreszinger, and Ivona Žura Žaja, "Effects of 5G radiofrequency electromagnetic radiation on indicators of vitality and DNA integrity of in vitro exposed boar semen," Theriogenology, Vol. 230, 243-249, Dec. 2024.
doi:10.1016/j.theriogenology.2024.09.025

2. Ruijie, P., A. Sali, L. Li, M. Z. Mohyedin, and S. Qahtan, "Evaluation of personal radiation exposure from wireless signals in indoor and outdoor environments," IEEE Access, 2025.
doi:10.1109/access.2025.3579085

3. Tahir, I., A. Sali, S. Q. Wali, A. Ismail, D. Suka, and M. Z. Mohyedin, "Analysis of absorbed power density and power loss density in human skin model from 5G mmWave exposure," Progress in Electromagnetics Research C, Vol. 156, 93-100, 2025.
doi:10.2528/pierc25021901

4. Johansson, Olle, "Disturbance of the immune system by electromagnetic fields --- A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment," Pathophysiology, Vol. 16, No. 2-3, 157-177, Aug. 2009.
doi:10.1016/j.pathophys.2009.03.004

5. Bodewein, Lambert, Dagmar Dechent, David Graefrath, Thomas Kraus, Tobias Krause, and Sarah Driessen, "Systematic review of the physiological and health-related effects of radiofrequency electromagnetic field exposure from wireless communication devices on children and adolescents in experimental and epidemiological human studies," PLoS One, Vol. 17, No. 6, e0268641, Jun. 2022.
doi:10.1371/journal.pone.0268641

6. Calvente, Irene and María Isabel Núñez, "Is the sustainability of exposure to non-ionizing electromagnetic radiation possible?," Medicina Clínica (English Edition), Vol. 162, No. 8, 387-393, Apr. 2024.
doi:10.1016/j.medcle.2023.11.016

7. Ziegelberger, G., R. Croft, M. Feychting, A. C. Green, A. Hirata, G. D'Inzeo, K. Jokela, S. Loughran, C. Marino, S. Miller, et al. "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Physics, Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210

8. Toyoda, S., T. Yamamoto, and K. Koshiji, "Prototype and evaluation of high-hydrous gel phantom for 100 kHz to 1 MHz using ATO/TiO2," 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 6814-6817, Mexico, Nov. 2021.
doi:10.1109/embc46164.2021.9630886

9. Sulaiman, N. H., N. A. Samsuri, M. K. A. Rahim, M. Inam, F. C. Seman, and N. Othman, "Phantom development for in vitro measurements of MICS band telemetry antenna," Journal of Physics: Conference Series, Vol. 1502, No. 1, 012007, 2020.
doi:10.1088/1742-6596/1502/1/012007

10. Ishido, R. and T. Onishi, "A study on the solid phantoms for 3-6 GHz and evaluation of SAR distributions based on the thermographic method," IEICE Proceedings Series, Vol. 11, No. 3B3-2, 577-580, 2004.
doi:10.34385/proc.11.3B3-2

11. Nizam, Nurul Najwa Mohd, Kamilia Kamardin, Yoshihide Yamada, Izni Husna Idris, Nurul Huda Abd Rahman, and Hazilah Mad Kaidi, "Fabrication of human body phantom for body centric communication systems at 2.4 GHz," International Journal of Integrated Engineering, Vol. 12, No. 6, 20-26, 2020.
doi:10.30880/ijie.2020.12.06.003

12. Särestöniemi, Mariella, Daljeet Singh, Rakshita Dessai, Charline Heredia, Sami Myllymäki, and Teemu Myllylä, "Realistic 3D phantoms for validation of microwave sensing in health monitoring applications," Sensors, Vol. 24, No. 6, 1975, Mar. 2024.
doi:10.3390/s24061975

13. Mobashsher, Ahmed T. and Amin M. Abbosh, "Artificial human phantoms: Human proxy in testing microwave apparatuses that have electromagnetic interaction with the human body," IEEE Microwave Magazine, Vol. 16, No. 6, 42-62, Jul. 2015.
doi:10.1109/mmm.2015.2419772

14. Guido, Katrina, Carmen Matos, Jordan Ramsey, and Asimina Kiourti, "Tissue-emulating phantoms for in vitro experimentation at radio frequencies: Exploring characteristics, fabrication, and testing methods," IEEE Antennas and Propagation Magazine, Vol. 63, No. 6, 29-39, Dec. 2021.
doi:10.1109/map.2020.3003208

15. Irfana, P. P., Resmy S. Anand, Anup Aprem, V. P. Vishal, Shaj Upendran, and S. Harikrisnan, "An economical method for modeling, fabrication, testing, and characterization of a bio-phantom for pulmonary edema," 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), 1-8, Kerala, India, Nov. 2023.
doi:10.1109/rasse60029.2023.10363527

16. Ito, Koichi, Katsumi Furuya, Yoshinobu Okano, and Lira Hamada, "Development and characteristics of a biological tissue-equivalent phantom for microwaves," Electronics and Communications in Japan (Part I: Communications), Vol. 84, No. 4, 67-77, Apr. 2001.
doi:10.1002/1520-6424(200104)84:4<67::aid-ecja8>3.0.co;2-d

17. Chahat, Nacer, Maxim Zhadobov, and Ronan Sauleau, "Broadband tissue-equivalent phantom for BAN applications at millimeter waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2259-2266, Jul. 2012.
doi:10.1109/tmtt.2012.2195196

18. Chahat, N., M. Zhadobov, S. Alekseev, and R. Sauleau, "Human skin-equivalent phantom for on-body antenna measurements in 60 GHz band," Electronics Letters, Vol. 48, No. 2, 67-68, Jan. 2012.
doi:10.1049/el.2011.2619

19. Mendes, Carlos and Custódio Peixeiro, "A dual-mode single-band wearable microstrip antenna for body area networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3055-3058, 2017.
doi:10.1109/lawp.2017.2760142

20. Islam, Md. Tarikul, Md. Samsuzzaman, Salehin Kibria, and Mohammad Tariqul Islam, "Experimental breast phantoms for estimation of breast tumor using microwave imaging systems," IEEE Access, Vol. 6, 78587-78597, 2018.
doi:10.1109/access.2018.2885087

21. Abd Rahman, Nurul Huda, Yoshihide Yamada, and Muhammad Shakir Amin Nordin, "Analysis on the effects of the human body on the performance of electro-textile antennas for wearable monitoring and tracking application," Materials, Vol. 12, No. 10, 1636, May 2019.
doi:10.3390/ma12101636

22. Kranold, Lena, Jasmine Boparai, Leonardo Fortaleza, and Milica Popovic, "A comparative study of skin phantoms for microwave applications," 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 4462-4465, Montreal, QC, Canada, Jul. 2020.
doi:10.1109/embc44109.2020.9175857

23. Fukunaga, K., S. Watanabe, and Y. Yamanaka, "Dielectric properties of tissue-equivalent liquids and their effects on specific absorption rate," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 1, 126-129, Feb. 2004.
doi:10.1109/temc.2004.823624