Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-10-04
Low Profile Meta-Surfaces Based Stacked Slotted Microstrip Antenna in a Ring for 5G Applications
By
Progress In Electromagnetics Research M, Vol. 135, 69-79, 2025
Abstract
This paper proposes a stacked slotted microstrip antenna (MSA) using multiple meta-surfaces that offers high gain and stable radiation patterns for 5G applications. A metal plated suspended MSA (SMSA) in air is designed to enhance gain and band width (BW). However, impedance becomes inductive and cross-polarization level (CPL) increases with increase in probe feed length. To decrease the inductive impedance and increase the capacitance, a slot in SMSA is etched. A parasitic patch with meta-surfaces on a superstrate is placed above the slotted SMSA and a rectangular ring around the slotted MSA is designed to increase the inductance. To compensate it, substrate height is decreased. The decrease in probe feed length/substrate height, decreases the CPL. Parasitic patch, rectangular ring around slotted SMSA and meta-surfaces, electro-magnetically couple with SMSA and enhance the BW of antenna. The low-profile (0.979λ0 × 1.03λ0 × 0.064λ0, λ0 - wavelength in free-space at 3.3 GHz) antenna offers peak gain of 9.8 dBi, antenna efficiency > 80%; SLL and CPL are < -22 dB; and the gain variation is < 0.5 dB over the 3.3-3.6 GHz frequency band for 5G application. The substrate height of the proposed novel structure is 2.5 times less than SMSA, and it offers an improvement of 8.1 dB in CPL as compared to SMSA.
Citation
Vijaypal Yadav, Meenakshi Awasthi, and Rajiv Kumar Gupta, "Low Profile Meta-Surfaces Based Stacked Slotted Microstrip Antenna in a Ring for 5G Applications," Progress In Electromagnetics Research M, Vol. 135, 69-79, 2025.
doi:10.2528/PIERM25080102
References

1. Kumar, Girish and Kamala Prasan Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Chopra, Rinkee and Girish Kumar, "Broadband and high gain multilayer multiresonator elliptical microstrip antenna," IET Microwaves, Antennas & Propagation, Vol. 14, No. 8, 821-829, 2020.
doi:10.1049/iet-map.2019.0186

3. Raha, Krishnendu and K. P. Ray, "Broadband high gain and low cross-polarization double cavity-backed stacked microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5902-5906, 2022.
doi:10.1109/tap.2022.3140349

4. Sivanagaraju, Nagidi and Manchikalapudi Satya Sai Ram, "Design and analysis of wideband circularly polarized antenna loaded with ring structure," Progress In Electromagnetics Research C, Vol. 158, 57-61, 2025.
doi:10.2528/PIERC25061204

5. Chopra, Rinkee and Girish Kumar, "High gain broadband stacked triangular microstrip antennas," Microwave and Optical Technology Letters, Vol. 62, No. 9, 2881-2888, 2020.
doi:10.1002/mop.32372

6. Liu, Shuo, Wen Wu, and Da-Gang Fang, "Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 468-471, 2016.
doi:10.1109/lawp.2015.2453329

7. Kumar, Praveen, Tanweer Ali, and M. M. Manohara Pai, "Electromagnetic metamaterials: A new paradigm of antenna design," IEEE Access, Vol. 9, 18722-18751, 2021.
doi:10.1109/access.2021.3053100

8. Milias, Christos, Rasmus B. Andersen, Pavlos I. Lazaridis, Zaharias D. Zaharis, Bilal Muhammad, Jes T. B. Kristensen, Albena Mihovska, and Dan D. S. Hermansen, "Metamaterial-inspired antennas: A review of the state of the art and future design challenges," IEEE Access, Vol. 9, 89846-89865, 2021.
doi:10.1109/access.2021.3091479

9. Zheng, Qi, Chenjiang Guo, Jun Ding, and Guy A. E. Vandenbosch, "Use of non‐uniform RIS and parasitic strips to improve antenna CP performance," IET Microwaves, Antennas & Propagation, Vol. 14, No. 14, 1795-1802, 2020.
doi:10.1049/iet-map.2020.0135

10. Srivastava, Kunal, Sachin Kumar, Santanu Dwari, Binod Kumar Kanaujia, Hyun Chul Choi, and Kang Wook Kim, "Anisotropic meta-surface-based wideband high gain circularly polarized patch antenna," Electromagnetics, Vol. 40, No. 8, 594-604, 2020.
doi:10.1080/02726343.2020.1838057

11. Guthi, Srinivas and Vakula Damera, "High gain and wideband circularly polarized S-shaped patch antenna with reactive impedance surface and frequency-selective surface configuration for Wi-Fi and Wi-Max applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 11, e22865, 2021.
doi:10.1002/mmce.22865

12. Ni, Chun, Liang Zhang, and Zhongxiang Zhang, "A low profile broadband circularly polarized metasurface antenna based on tri-modal," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 10, 3267-3271, 2024.
doi:10.1109/lawp.2024.3433618

13. De Dieu Ntawangaheza, Jean, Liguo Sun, Chen Yang, Yingying Pang, and Gerard Rushingabigwi, "Thin-profile wideband and high-gain microstrip patch antenna on a modified AMC," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2518-2522, 2019.
doi:10.1109/lawp.2019.2942056

14. Singh, Amit Kumar, Mahesh P. Abegaonkar, and Shiban K. Koul, "Compact near zero index metasurface lens with high aperture efficiency for antenna radiation characteristic enhancement," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1248-1254, 2019.
doi:10.1049/iet-map.2018.6142

15. Jagtap, Shishir, Anjali Chaudhari, Nayana Chaskar, Shilpa Kharche, and Rajiv K. Gupta, "A wideband microstrip array design using RIS and PRS layers," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 509-512, 2018.
doi:10.1109/lawp.2018.2799873

16. Rochkari, Anjali, Shubhangi Verulkar, Mahadu Trimukhe, Varsha Bodade, and Rajiv Gupta, "Low profile high gain wideband stacked MSA array for 5G, WLAN and C-band applications," International Journal of Microwave & Optical Technology, Vol. 19, No. 1, 80, 2024.

17. Singh, Amit Kumar, Mahesh Pandurang Abegaonkar, and Shiban Kishen Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/pierc18012905

18. Meng, Fanji, Ying Liu, and Satish K. Sharma, "A miniaturized patch antenna with enhanced bandwidth by using reactive impedance surface ground and coplanar parasitic patches," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 7, e22225, 2020.
doi:10.1002/mmce.22225

19. Rochkari, Anjali, S. Verulkar, Nayana Chaskar, M. Trimukhe, and R. Gupta, "Cross polar reduction of a high gain wide-band stacked microstrip antenna using metasurfaces," Progress In Electromagnetics Research Letters, Vol. 119, 91-98, 2024.
doi:10.2528/pierl24032501

20. Singh, Amit K., Mahesh P. Abegaonkar, and Shiban Kishen Koul, Metamaterials for Antenna Applications, CRC Press, Boca Raton, 2021.
doi:10.1201/9781003045885

21. Tadesse, Abdulaziz D., Om Prakash Acharya, and Sudhakar Sahu, "Application of metamaterials for performance enhancement of planar antennas: A review," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 5, e22154, 2020.
doi:10.1002/mmce.22154

22. Paul, Shubhadip and Mohammad Jaleel Akhtar, "Near field microwave subsurface imaging using metasurface loaded planar antenna and synthetic aperture radar (SAR) technique," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 10, e22800, 2021.
doi:10.1002/mmce.22800

23. Ni, Chun, Zhikui Yu, Liang Zhang, and Zhongxiang Zhang, "A wideband circularly polarized and beam deflection antenna based on two metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 2861-2865, 2023.
doi:10.1109/lawp.2023.3302418

24. Ni, Chun, Ming Sheng Chen, Zhong Xiang Zhang, and Xian Liang Wu, "Design of frequency-and polarization-reconfigurable antenna based on the polarization conversion metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 78-81, 2018.
doi:10.1109/lawp.2017.2775444

25. Ji, Lu-Yang, Pei-Yuan Qin, and Y. Jay Guo, "Wideband Fabry-Perot cavity antenna with a shaped ground plane," IEEE Access, Vol. 6, 2291-2297, 2017.
doi:10.1109/access.2017.2782749

26. Chaskar, Nayana, S. Jagtap, Rajashree Thakare, and R. Gupta, "Gain flattening of wideband FPC antenna using elliptical and rectangular slotted AMC layers," Progress In Electromagnetics Research C, Vol. 110, 81-89, 2021.
doi:10.2528/pierc21010402

27. Rochkari, Anjali, Vijaypal Yadav, Mahadu Trimukhe, Nayana Chaskar, Meenakshi Awasthi, and Rajiv Gupta, "Meta-surfaces based high gain wide-band stacked antenna with low cross-polarization and side lobe level for 5G applications," Progress In Electromagnetics Research C, Vol. 153, 179-188, 2025.
doi:10.2528/pierc25010101