Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-05
Miniaturized Ultrawideband Circularly Polarized Antenna with Enhanced Axial Ratio Bandwidth for C-Band Automotive and Satellite Applications
By
Progress In Electromagnetics Research C, Vol. 161, 159-168, 2025
Abstract
Circularly polarized (CP) antennas minimize polarization losses and improve signal reliability in ultra-reliable and low-latency satellite communication. Compact design, wide impedance and axial ratio bandwidth (ARBW) are key requirements for circularly polarized antennas utilized for modern automotive wireless applications. In this work, a miniaturized slotted antenna for C-band automotive-oriented wireless applications is proposed. The antenna achieves a wide measured impedance bandwidth of 69.5% (4.0-8.26 GHz, 4.26 GHz) and exhibits an ARBW of 51% (4.96-8.33 GHz, 3.37 GHz). The overall compact size of 25 × 30 × 1.6 mm3 (0.33λ × 0.40λ × 0.02λ at 4 GHz) further underscores its suitability for integration in space-constrained C-band communication systems. The anticipated design is optimized using rigorous parametric analysis to achieve a wide ARBW from θ = -27˚ to +33˚ which is very beneficial for satellite applications. The fabricated prototype demonstrates a measured peak gain of 4.8 dBi and radiation efficiency ranging from 82% to 92% across the radiating band. Measurement results obtained from the fabricated antenna are validated with simulations and show satisfactory agreement. The anticipated design, when compared with existing literature, is found to outperform other designs in terms of size, ARBW, and impedance bandwidth. The achieved resonance in the proposed design can be utilized for satellite communication, medical and automotive applications (tele-operated driving support, high-definition map collecting and sharing, infrastructure-based teleoperated driving), and other applications in C-band.
Citation
Sanjeev Sharma, Ashish Kumar, Rajeev Kumar, Nitin Kumar Saluja, Zahriladha Zakaria, and Ahmed Jamal Abdullah Al-Gburi, "Miniaturized Ultrawideband Circularly Polarized Antenna with Enhanced Axial Ratio Bandwidth for C-Band Automotive and Satellite Applications," Progress In Electromagnetics Research C, Vol. 161, 159-168, 2025.
doi:10.2528/PIERC25080203
References

1. Al-Gburi, Ahmed Jamal Abdullah, Zahriladha Zakaria, Hussein Alsariera, Muhammad Firdaus Akbar, Imran Mohd Ibrahim, Khalid Subhi Ahmad, Sarosh Ahmad, and Samir Salem Al-Bawri, "Broadband circular polarised printed antennas for indoor wireless communication systems: A comprehensive review," Micromachines, Vol. 13, No. 7, 1048, 2022.
doi:10.3390/mi13071048

2. Darimireddy, Naresh K., Rajasekhar Nalanagula, Runa Kumari, Dunya Z. Mohammed, Zahriladha Zakaria, and Ahmed J. A. Al-Gburi, "Wideband circularly polarized inverted cup shaped hybrid dielectric-resonator antenna over an asymmetric jerusalem cross-based metasurface," Progress In Electromagnetics Research Letters, Vol. 125, 59-66, 2025.
doi:10.2528/pierl25010105

3. Wang, Hai, Xue Lei, Tian-Dong Duan, Tian-Peng Li, Ming-Yang Zhao, Jun Gao, and Pan Lu, "Circularly polarized waveguide aperture array antenna with a wide axial ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 8, 1644-1648, 2022.
doi:10.1109/lawp.2022.3176629

4. Yadav, Sachin Kumar, A. Gupta, V. Kumar, et al., "Prediction of axial ratio using machine learning (ML) for a dual-band circularly polarized dielectric resonator antenna (DRA)," Chinese Journal of Physics, Vol. 96, 1364-1384, 2025.
doi:10.1016/j.cjph.2025.07.008

5. Midya, Manas, Shankar Bhattacharjee, Goutam Kumar Das, and Monojit Mitra, "Dual-band dual-polarized compact planar monopole antenna for wide axial ratio bandwidth application," International Journal of RF and Microwave Computer‐Aided Engineering, Vol. 30, No. 5, e22152, 2020.
doi:10.1002/mmce.22152

6. Sharma, Vijay and Tejpal Jhajharia, "Square slot antenna for wide circularly polarized bandwidth and axial ratio beamwidth," Electrical, Control and Communication Engineering, Vol. 17, No. 1, 1-11, 2021.
doi:10.2478/ecce-2021-0001

7. Xu, Rui, Jianying Li, Yang-Xiao Qi, Guangwei Yang, and Jiang-Jun Yang, "A design of triple-wideband triple-sense circularly polarized square slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1763-1766, 2017.
doi:10.1109/lawp.2017.2674677

8. Ellis, Mubarak Sani, Zhiqin Zhao, Jiangniu Wu, Xiaoxiang Ding, Zaiping Nie, and Qing-Huo Liu, "A novel simple and compact microstrip-fed circularly polarized wide slot antenna with wide axial ratio bandwidth for C-band applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1552-1555, 2016.
doi:10.1109/tap.2016.2526076

9. Srivastava, Karunesh, Brijesh Mishra, and Rajeev Singh, "Microstrip-line-fed inverted L-shaped circularly polarized antenna for C-band applications," International Journal of Microwave and Wireless Technologies, Vol. 14, No. 4, 502-510, 2022.
doi:10.1017/s1759078721000635

10. Evans, H., P. Gale, B. Aljibouri, E. G. Lim, E. Korolkeiwicz, and A. Sambell, "Application of simulated annealing to design of serial feed sequentially rotated 2 × 2 antenna array," Electronics Letters, Vol. 36, No. 24, 1987-1988, 2000.
doi:10.1049/el:20001407

11. Ta, Son Xuat and Ikmo Park, "Planar wideband circularly polarized metasurface-based antenna array," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 12, 1620-1630, 2016.
doi:10.1080/09205071.2016.1210038

12. Ta, Son Xuat and Ikmo Park, "Compact wideband circularly polarized patch antenna array using metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1932-1936, 2017.
doi:10.1109/lawp.2017.2689161

13. Zhang, Yanjun, Aixin Chen, Shunfeng Cao, and Donglin Su, "Design of a circularly polarized 8 × 8 patch antenna array using a new series-parallel feed," 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 411-414, Beijing, China, 2009.
doi:10.1109/mape.2009.5355528

14. Ong, C. S., M. F. Karim, L. C. Ong, T. M. Chiam, and A. Alphones, "A compact 2 × 2 circularly polarized antenna array for energy harvesting," 2010 Asia-Pacific Microwave Conference, 1977-1980, Yokohama, Japan, 2010.

15. Jie, Ang Ming, Muhammad Faeyz Karim, Luo Bin, Francois Chin, Michael Ong, et al. "A proximity-coupled circularly polarized slotted-circular patch antenna for RF energy harvesting applications," 2016 IEEE Region 10 Conference (TENCON), 2027-2030, Singapore, 2016.
doi:10.1109/tencon.2016.7848381

16. Lu, Zhengyan, Le Yang, and Lingsheng Yang, "Design of a broadband circularly polarized antenna array," Progress In Electromagnetics Research M, Vol. 82, 195-203, 2019.
doi:10.2528/pierm19041405

17. Elahi, Manzoor, Son Trinh-Van, Youngoo Yang, Kang-Yoon Lee, and Keum-Cheol Hwang, "Compact and high gain 4 × 4 circularly polarized microstrip patch antenna array for next generation small satellite," Applied Sciences, Vol. 11, No. 19, 8869, 2021.
doi:10.3390/app11198869

18. Srinivasan, K., M. Balasaraswathi, C. S. Boopathi, and Huy Hung Tran, "Single-layer wideband circularly polarized antenna array using sequential phase feed for C-band applications," Wireless Networks, Vol. 26, No. 6, 4163-4172, 2020.
doi:10.1007/s11276-020-02332-0

19. Ahmed, Waleed Abdelrahim and Quanyuan Feng, "A novel compact CP antenna with wide axial ratio bandwidth for worldwide UHF RFID handheld reader," International Journal of Antennas and Propagation, Vol. 2019, No. 1, 2497450, 2019.
doi:10.1155/2019/2497450

20. Ashraf, M. Ahsan, Farooq A. Tahir, and Qammer H. Abbasi, "Circularly polarized C-shaped monopole antenna for C-band applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2389-2390, Boston, MA, USA, 2018.
doi:10.1109/apusncursinrsm.2018.8608614

21. Thanki, Poonam, Trushit Upadhyaya, Upesh Patel, Khaled Aliqab, Meshari Alsharari, Ayman A. Althuwayb, Ammar Armghan, and Vishal Sorathiya, "Dual band four port MIMO antenna with dual circular polarization for Wi-Fi/WiMAX applications," Alexandria Engineering Journal, Vol. 112, 1-16, 2025.
doi:10.1016/j.aej.2024.10.062

22. Dkiouak, Aziz, Faouzi Rahmani, Moustapha El bakkali, Najib El Kamoun, Mostafa Baghouri, and Alia Zakriti, "A compact MIMO antenna with an equivalent circuit model for satellite communications, weather radar and 5G mobile technology," Engineering Research Express, Vol. 7, No. 3, 035344, 2025.
doi:10.1088/2631-8695/adf8be

23. Bose, Meenambal and Vasudevan Karuppiah, "Metamaterial inspired superstrate loaded miniaturized quad port MIMO antenna for 5G C-band applications," Optics Communications, Vol. 574, 131123, 2025.
doi:10.1016/j.optcom.2024.131123

24. Kulkarni, Jayshri, Arpan Desai, and Chow-Yen Desmond Sim, "Wideband four-port MIMO antenna array with high isolation for future wireless systems," AEU --- International Journal of Electronics and Communications, Vol. 128, 153507, 2021.
doi:10.1016/j.aeue.2020.153507