Vol. 135
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-09-14
Raman and FTIR Fingerprint Spectra of Blood and Bronchoalveolar Lavage Fluid for AI-Based Classification of Severe Pneumonia
By
Progress In Electromagnetics Research M, Vol. 135, 11-21, 2025
Abstract
Severe pneumonia poses a significant threat to public health. Delayed diagnosis is a core challenge in treatment. This study uses two rapid, low-cost spectroscopic fingerprinting techniques - Raman spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) absorption spectroscopy - to analyze biofluids such as blood and bronchoalveolar lavage fluid (BALF). In contrast to our earlier work which combined infrared spectra with clinical biochemical test results, this paper focuses solely on the spectral data to validate a fast and label-free diagnostic method. We used a spectral transformer network (STNetwork) to perform AI-based classification of severe pneumonia from the spectral fingerprints of blood and BALF. While both modalities are effective, FTIR spectroscopy exhibits superior diagnostic precision (97.78% test accuracy) and stability (SD < 0.0139) for blood samples. BALF offers a unique window into the local lung microenvironment, and both metabolomic analysis and spectral fingerprint classification were performed. The classification results for BALF Raman spectra (enhanced with surface-enhanced Raman spectroscopy) gave a training accuracy of 96.71%±1.86% and a testing accuracy of 90.62%±3.95%, better than the classification results for BALF FTIR spectra. The present study provides a reliable technical foundation for developing rapid and high-accuracy screening solutions for severe pneumonia.
Citation
Sailing He, Jialun Li, Anqi Yang, Chenhui Wang, Chuan Zhang, Xinyue Li, Ke Cui, Youzu Xu, Julian Evans, and Yinghe Xu, "Raman and FTIR Fingerprint Spectra of Blood and Bronchoalveolar Lavage Fluid for AI-Based Classification of Severe Pneumonia," Progress In Electromagnetics Research M, Vol. 135, 11-21, 2025.
doi:10.2528/PIERM25080402
References

1. Chernii, V. I., "Severe community-acquired pneumonia: Principles of diagnostics and intensive therapy," Infusion & Chemotherapy, Vol. 6, No. 3, 7-15, 2023.
doi:10.32902/2663-0338-2023-3-7-15

2. Niederman, Michael S. and Antoni Torres, "Severe community-acquired pneumonia," European Respiratory Review, Vol. 31, No. 166, 220123, 2022.
doi:10.1183/16000617.0123-2022

3. Woodhead, Mark, Catherine A. Welch, David A. Harrison, Geoff Bellingan, and Jon G. Ayres, "Community-acquired pneumonia on the intensive care unit: Secondary analysis of 17,869 cases in the ICNARC Case Mix Programme Database," Critical Care, Vol. 10, No. Suppl 2, S1, 2006.
doi:10.1186/cc4927

4. Huang, Tinglong, Xuelan Zheng, Lisui He, and Zhiliang Chen, "Diagnostic value of deep learning-based CT feature for severe pulmonary infection," Journal of Healthcare Engineering, Vol. 2021, No. 1, 5359084, Nov. 2021.
doi:10.1155/2021/5359084

5. Cui, Ke, Dawei Gong, Xiaobo Chen, Youzu Xu, Haiyan Li, Yefei Zhu, Julian Evans, Xin Gong, Zhenzhan Shi, Yinghe Xu, and Sailing He, "Classification of severe bacterial pneumonia based on CT images and deep learning," Progress In Electromagnetics Research Letters, Vol. 127, 23-28, 2025.
doi:10.2528/PIERL25070203

6. Martin, Christian, Kathleen S. Mahan, Talia D. Wiggen, Adam J. Gilbertsen, Marshall I. Hertz, Ryan C. Hunter, and Robert A. Quinn, "Microbiome and metabolome patterns after lung transplantation reflect underlying disease and chronic lung allograft dysfunction," Microbiome, Vol. 12, No. 1, 196, 2024.
doi:10.1186/s40168-024-01893-y

7. Cao, Xiangkun Elvis, Serge Y. Ongagna-Yhombi, Ruisheng Wang, Yue Ren, Balaji Srinivasan, Joshua A. Hayden, Zhen Zhao, David Erickson, and Saurabh Mehta, "A diagnostic platform for rapid, simultaneous quantification of procalcitonin and C-reactive protein in human serum," Ebiomedicine, Vol. 76, 103867, 2022.
doi:10.1016/j.ebiom.2022.103867

8. Farooq, Sajid, Matheus Del-Valle, Moises Oliveira Dos Santos, Sofia Nascimento Dos Santos, Emerson Soares Bernardes, and Denise Maria Zezell, "Rapid identification of breast cancer subtypes using micro-FTIR and machine learning methods," Applied Optics, Vol. 62, No. 8, C80-C87, 2023.
doi:10.1364/ao.477409

9. Zhang, Chuan, Jialun Li, Wenda Luo, and Sailing He, "Ai-assisted detection for early screening of acute myeloid leukemia using infrared spectra and clinical biochemical reports of blood," Bioengineering, Vol. 12, No. 4, 340, 2025.
doi:10.3390/bioengineering12040340

10. Jiao, Changwei, Jiaqi Liao, and Sailing He, "An aberration-free line scan confocal Raman imager and type classification and distribution detection of microplastics," Journal of Hazardous Materials, Vol. 470, 134191, 2024.
doi:10.1016/j.jhazmat.2024.134191

11. Yang, Anqi, Zhipeng Hu, Xiaer Zou, Yuan Zhang, Jiao Qian, Shuo Li, Junbo Liang, and Sailing He, "Single-cell Raman spectroscopy for rapid detection of bacteria in ballast water and UV254 treatment evaluation," Talanta, Vol. 284, 127266, 2025.
doi:10.1016/j.talanta.2024.127266

12. Han, Gyeo-Re, Artem Goncharov, Merve Eryilmaz, Shun Ye, Barath Palanisamy, Rajesh Ghosh, Fabio Lisi, Elliott Rogers, David Guzman, Defne Yigci, et al., "Machine learning in point-of-care testing: Innovations, challenges, and opportunities," Nature Communications, Vol. 16, No. 1, 3165, 2025.
doi:10.1038/s41467-025-58527-6

13. Amin, Youssef, Paola Cecere, Tania Pomili, and Pier P. Pompa, "Smartphone-integrated YOLOv4-CNN approach for rapid and accurate point-of-care colorimetric antioxidant testing in saliva," Progress In Electromagnetics Research, Vol. 181, 9-19, 2024.
doi:10.2528/pier24120505

14. Zhu, He, Jing Luo, Jiaqi Liao, and Sailing He, "High-accuracy rapid identification and classification of mixed bacteria using hyperspectral transmission microscopic imaging and machine learning," Progress In Electromagnetics Research, Vol. 178, 49-62, 2023.
doi:10.2528/pier23082303