Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-18
Calculation of Equivalent Series Resistance of an Annular Receiving Coil with an Embedded Magnetic Core
By
Progress In Electromagnetics Research C, Vol. 160, 254-262, 2025
Abstract
The annular micro receiving coil (RC) holds promise in the wireless power supply for capsule endoscopy (CE). The equivalent series resistance (RSR) of the RC plays a critical role in energy transmission efficiency. Calculating the RSR is challenging because RC typically incorporates an embedded magnetic core. To overcome this challenge, this paper employs Dowell's method and the Bessel's method respectively to calculate RSR. The analyzed RC consists of an annular core with two grooves and dual windings positioned within the grooves. The influence of the magnetic core on the RSR is equivalently considered through the winding skin effect and core losses. We compared the simulated, calculated, and measured values of the RSR, and found that: the error of Dowell's method becomes smaller when the groove spacing Dg > 4 mm, but fails to capture the influence of Dg on the RSR. Conversely, Bessel's method effectively captures the influence of Dg but exhibits larger errors (2.09%~26.52%). Based on this finding, we propose a novel Bessel-modified Dowell's (BMD) method by integrating the framework of Dowell's method with a proximity-effect correction term from Bessel's method, which reduces the maximum calculation error to within 13.72%, facilitating rapid optimization of annular coils with embedded magnetic cores.
Citation
Ruichen Qian, Chenzhi Lu, Zhixin Li, Xinyu Li, Kewei Zhu, and Jinyang Gao, "Calculation of Equivalent Series Resistance of an Annular Receiving Coil with an Embedded Magnetic Core," Progress In Electromagnetics Research C, Vol. 160, 254-262, 2025.
doi:10.2528/PIERC25080702
References

1. Flemming, Juliane and Silke Cameron, "Small bowel capsule endoscopy Indications, results, and clinical benefit in a University environment," Medicine, Vol. 97, No. 14, e0148, Apr. 2018.
doi:10.1097/MD.0000000000010148

2. Youssef, Fady F., Laurel L. Branch, Mark Kowalczyk, and Thomas J. Savides, "Endoscopic approaches for managing small intestinal disease," Annual Review of Medicine, Vol. 76, 155-165, Jan. 2025.
doi:10.1146/annurev-med-060123-120109

3. Zhao, K., Y. F. Yang, and J. P. Wang, "Clinical value of capsule endoscopy in small intestinal diseases," Zhonghua Nei Ke Za Zhi, Vol. 59, No. 2, 124-128, 2020.
doi:10.3760/cma.j.issn.0578-1426.2020.02.006

4. Cao, Qing, Runyi Deng, Yue Pan, Ruijie Liu, Yicheng Chen, Guofang Gong, Jun Zou, Huayong Yang, and Dong Han, "Robotic wireless capsule endoscopy: Recent advances and upcoming technologies," Nature Communications, Vol. 15, No. 1, 4597, May 2024.
doi:10.1038/s41467-024-49019-0

5. Khan, Sadeque Reza, Sumanth Kumar Pavuluri, Gerard Cummins, and Marc P. Y. Desmulliez, "Wireless power transfer techniques for implantable medical devices: A review," Sensors, Vol. 20, No. 12, 3487, Jun. 2020.
doi:10.3390/s20123487

6. Jiang, Bin, Yang-Yang Qian, Jun Pan, Xi Jiang, Yuan-Chen Wang, Jia-Hui Zhu, Wen-Bin Zou, Wei Zhou, Zhao-Shen Li, and Zhuan Liao, "Second-generation magnetically controlled capsule gastroscopy with improved image resolution and frame rate: A randomized controlled clinical trial (with video)," Gastrointestinal Endoscopy, Vol. 91, No. 6, 1379-1387, 2020.
doi:10.1016/j.gie.2020.01.027

7. Gao, Jinyang, Guozheng Yan, Zhiwu Wang, Shu He, Fei Xu, Pingping Jiang, and Dasheng Liu, "Design and testing of a motor-based capsule robot powered by wireless power transmission," IEEE/ASME Transactions on Mechatronics, Vol. 21, No. 2, 683-693, Apr. 2016.
doi:10.1109/tmech.2015.2497083

8. Khodaee, Zohreh, Mohammad Reza Zakerzadeh, and Mohammad Gafar Sedigh Damghanizadeh, "Enhancing capsule endoscopy with an orient-controllable internal actuation mechanism: Proof of concept," Mechatronics, Vol. 106, 103296, Apr. 2025.
doi:10.1016/j.mechatronics.2025.103296

9. Song, Zhibin, Wenjie Zhang, Wenhui Zhang, and Dario Paolo, "A novel biopsy capsule robot based on high-speed cutting tissue," Cyborg and Bionic Systems, Vol. 2022, Article ID 9783517, 2022.
doi:10.34133/2022/9783517

10. Sidhu, Mayenaaz, Neal Shahidi, Sunil Gupta, Lobke Desomer, Sergei Vosko, W. Arnout van Hattem, Luke F. Hourigan, Eric Y. T. Lee, Alan Moss, Spiro Raftopoulos, Steven J. Heitman, Stephen J. Williams, Simon Zanati, David J. Tate, Nicholas Burgess, and Michael J. Bourke, "Outcomes of thermal ablation of the mucosal defect margin after endoscopic mucosal resection: A prospective, international, multicenter trial of 1000 large nonpedunculated colorectal polyps," Gastroenterology, Vol. 161, No. 1, 163-170, Jul. 2021.
doi:10.1053/j.gastro.2021.03.044

11. Cui, Chang, Qiang Zhao, and Zhongjian Li, "Design of wireless power supply optimized structure for capsule endoscopes," Journal of Power Technologies, Vol. 96, No. 2, 101-109, 2016.

12. Dowell, P. L., "Effects of eddy currents in transformer windings," Proceedings of the Institution of Electrical Engineers, Vol. 113, No. 8, 1387-1394, 1966.
doi:10.1049/piee.1966.0236

13. Han, Ding, Renqing Wen, Guozheng Yan, Dahong Qian, Shuai Kuang, Pingping Jiang, and Zhiwu Wang, "Stable wireless power transfer system for capsule robot using three-dimensional hybrid transmitting coil pairs," IEEE Transactions on Power Electronics, Vol. 40, No. 6, 8824-8833, Jun. 2025.
doi:10.1109/tpel.2025.3535530

14. Hua, Dezheng, Lei Deng, Janusz Gołdasz, Xinhua Liu, Haiping Du, Grzegorz Królczyk, Weihua Li, and Zhixiong Li, "Functional capsule robots: A review of locomotion, pose, medical operation and wireless power transmission reported in 2018-2023," Smart Materials and Structures, Vol. 33, No. 7, 073002, 2024.
doi:10.1088/1361-665x/ad52d8

15. Gao, Jinyang, Jinshan Zhou, Changshun Yuan, Zenglei Zhang, Chen Gao, Guozheng Yan, Ruiqin Li, and Li Zhang, "Stable wireless power transmission for a capsule robot with randomly changing attitude," IEEE Transactions on Power Electronics, Vol. 38, No. 2, 2782-2796, Feb. 2023.
doi:10.1109/tpel.2022.3212699

16. Kuang, Shuai, Guozheng Yan, and Zhiwu Wang, "Optimization design for receiving coil with novel structure based on mutual coupling model in wireless power transmission for capsule endoscope," Energies, Vol. 13, No. 23, 6460, Jul. 2020.
doi:10.3390/en13236460

17. Elizondo, David, Ernesto L. Barrios, Alfredo Ursúa, and Pablo Sanchis, "Analytical modeling of high-frequency winding loss in round-wire toroidal inductors," IEEE Transactions on Industrial Electronics, Vol. 70, No. 6, 5581-5591, Jun. 2023.
doi:10.1109/tie.2022.3192689

18. Kutkut, N. H., "A simple technique to evaluate winding losses including two-dimensional edge effects," IEEE Transactions on Power Electronics, Vol. 13, No. 5, 950-958, 1998.
doi:10.1109/63.712319

19. Gao, Jinyang, Siyu Tian, Changshun Yuan, Ziyu Ma, Chen Gao, Guozheng Yan, Ruiqin Li, Qiulin Tan, and Li Zhang, "Design and optimization of a novel double-layer Helmholtz coil for wirelessly powering a capsule robot," IEEE Transactions on Power Electronics, Vol. 39, No. 1, 1826-1839, Jan. 2024.
doi:10.1109/tpel.2023.3321845

20. Gao, Jinyang and Guozheng Yan, "Design and implementation of a clamper-based and motor-driven capsule robot powered by wireless power transmission," IEEE Access, Vol. 7, 138151-138161, Sep. 2019.
doi:10.1109/access.2019.2941562

21. Jia, Zhiwei, Guozheng Yan, Zhiwu Wang, Hua Liu, et al. "Efficiency optimization of wireless power transmission systems for active capsule endoscopes," Physiological Measurement, Vol. 32, No. 10, 1561, Aug. 2011.
doi:10.1088/0967-3334/32/10/005

22. RamRakhyani, Anil Kumar, Shahriar Mirabbasi, and Mu Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Transactions on Biomedical Circuits and Systems, Vol. 5, No. 1, 48-63, Feb. 2011.
doi:10.1109/tbcas.2010.2072782

23. Yang, Zhi, Wentai Liu, and Eric Basham, "Inductor modeling in wireless links for implantable electronics," IEEE Transactions on Magnetics, Vol. 43, No. 10, 3851-3860, Oct. 2007.
doi:10.1109/tmag.2007.904189

24. Kazimierczuk, M., High-Frequency Magnetic Components, John Wiley & Sons, 2009.
doi:10.1002/9781118717806

25. Gao, J., et al. "Optimization of a powering coil onboard a dime-size inchworm-like robot for exploring the intestine," Journal of Shanghai Jiaotong University, Vol. 54, 152-159, Oct. 2020.

26. Abramowitz, Milton and Irene A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Vol. 55, National Bureau of Standards, 2006.
doi:10.2307/2004284