Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-23
Electromagnetic-Thermal Coupling in Sliding Contacts: Modeling Dynamic Resistance and Heat Generation for Electromagnetic Launch Systems
By
Progress In Electromagnetics Research C, Vol. 162, 106-113, 2025
Abstract
This study addresses multi-physics coupling challenges in high-speed sliding electrical contacts for Electromagnetic Launch Systems. A three-dimensional transient finite element model integrating electromagnetic-thermal interactions is established. By combining modified adhesion theory with Holm's contact resistance theory, we derive an analytical expression for dynamic contact resistance (DCR) that incorporates electromagnetic contact pressure, tangential friction, and temperature-dependent conductivity. The proposed localized modeling strategy with rail reverse motion technique efficiently resolves armature motion through coordinate transformation. Governing equations are discretized via the Galerkin method, with interfacial current continuity constraints and thermal partition coefficients enabling precise separation of Joule heating and frictional heat. Numerical results demonstrate robust current continuity compliance and reveal that DCR reaches its minimum during current peaks, exhibiting strong negative correlation with electromagnetic thrust. Tangential friction suppresses resistance rise by expanding the actual contact area, while electromagnetically dominated skin effects generate localized hotspots at contact trailing edges, armature limbs, and throat regions. This work elucidates the coupled frictional-Joule heating mechanisms governing multi-physics interactions, providing critical foundations for thermal management optimization in Electromagnetic Launch Systems.
Citation
Yikang Song, Pengyu Li, Junsheng Cheng, and Heyang Wang, "Electromagnetic-Thermal Coupling in Sliding Contacts: Modeling Dynamic Resistance and Heat Generation for Electromagnetic Launch Systems," Progress In Electromagnetics Research C, Vol. 162, 106-113, 2025.
doi:10.2528/PIERC25080703
References

1. Ma, Weiming and Junyong Lu, "Research progress and challenges of electromagnetic launch technology," Transactions of China Electrotechnical Society, Vol. 38, No. 15, 3943-3959, 2023.
doi:10.19595/j.cnki.1000-6753.tces.230470

2. Ruan, Jinghui, Lixue Chen, Shengguo Xia, Zengji Wang, and Lidong Li, "A review of current distribution in electromagnetic railguns," Transactions of China Electrotechnical Society, Vol. 35, No. 21, 4423-4431, 2020.
doi:10.19595/j.cnki.1000-6753.tces.191586

3. Zhang, Jiawei, Junyong Lu, Sai Tan, Yongsheng Zhang, and Bai Li, "A magnetic diffusion model of electromagnetic launcher considering initial contact pressure," Transactions of China Electrotechnical Society, Vol. 37, No. 2, 488-495, 2022.
doi:10.19595/j.cnki.1000-6753.tces.L90227

4. James, T. E. and D. C. James, "Contact pressure distribution and transition in solid armatures [EM launchers]," IEEE Transactions on Magnetics, Vol. 37, No. 1, 81-85, 2001.
doi:10.1109/20.911796

5. Schneider, M., M. Woetzel, W. Wenning, and D. Walch, "The ISL rapid fire railgun project RAFIRA. Part I: Technical aspects and design considerations," IEEE Transactions on Magnetics, Vol. 45, No. 1, 442-447, 2009.
doi:10.1109/tmag.2008.2008468

6. Barber, J. P. and Y. A. Dreizin, "Model of contact transitioning with ``realistic'' armature-rail interface," IEEE Transactions on Magnetics, Vol. 31, No. 1, 96-100, 1995.
doi:10.1109/20.364721

7. Barber, J. P., A. Challita, B. Maas, and L. Thurmond, "Contact transition in metal armatures (railguns)," IEEE Transactions on Magnetics, Vol. 27, No. 1, 228-232, 1991.
doi:10.1109/20.101031

8. Feng, Deng, Shengguo Xia, Lixue Chen, et al., "Non-uniformity of contact pressure distribution in armature assembly for railguns," High Voltage Engineering, Vol. 41, No. 6, 1873-1878, 2015.
doi:10.13336/j.1003-6520.hve.2015.06.014

9. Rip, L., S. Satapathy, and Kuo-Ta Hsieh, "Effect of geometry change on the current density distribution in C-shaped armatures," IEEE Transactions on Magnetics, Vol. 39, No. 1, 72-75, 2003.
doi:10.1109/tmag.2002.805906

10. Li, Chengxian, Shengguo Xia, Lixue Chen, Junjia He, Yan Xiong, Chendong Zhang, and Jinming Yao, "Simulations on current distribution in railgun under imperfect contact conditions," IEEE Transactions on Plasma Science, Vol. 47, No. 5, 2264-2268, 2019.
doi:10.1109/tps.2019.2907121

11. Yang, Yudong, Chengfang Fu, W. Xue, and H. Zhao, "Numerical calculation of movement electromagnetic field distribution between rail and armature," Journal of Gun Launch & Control, Vol. 35, No. 3, 1-5, 2014.
doi:10.3969/j.issn.1673-6524.2014.03.001

12. Lin, Qinghua and Baoming Li, "Modeling and simulation of electromagnetic railgun launching process based on a transient multi-physical field solver," Acta Armamentarii, Vol. 41, No. 9, 1697-1707, 2020.
doi:10.3969/j.issn.1000-1093.2020.09.001

13. Wu, Xinlong, Xin Yang, Junjie Ye, and Guoyou Liu, "Novel prognostics for IGBTs using wire-bond contact degradation model considering on-chip temperature distribution," IEEE Transactions on Power Electronics, Vol. 40, No. 3, 4411-4424, 2025.
doi:10.1109/tpel.2024.3498350

14. Coffo, M. and J. Gallant, "Simulation of the current distribution and the heat load of a brush projectile in a railgun with the finite element code ANSYS," Acta Physica Polonica A, Vol. 115, No. 6, 1112-1114, 2009.
doi:10.12693/aphyspola.115.1112

15. Li, Bai, Junyong Lu, Sai Tan, Yongsheng Zhang, and Xiyuan Cai, "Research on dynamic wear process of armature surface in high-speed sliding electric contact," Transactions of China Electrotechnical Society, Vol. 38, No. 1, 131-139, 2023.
doi:10.19595/j.cnki.1000-6753.tces.211461

16. Hsieh, K.-T., S. Satapathy, and M.-T. Hsieh, "Effects of pressure-dependent contact resistivity on contact interfacial conditions," IEEE Transactions on Magnetics, Vol. 45, No. 1, 313-318, 2009.
doi:10.1109/tmag.2008.2008876

17. Zhu, Chunyan and Baoming Li, "Analysis of sliding electric contact characteristics in augmented railgun based on the combination of contact resistance and sliding friction coefficient," Defence Technology, Vol. 16, No. 4, 747-752, 2020.
doi:10.1016/j.dt.2019.12.007

18. Chen, Lixue, Junjia He, Zheng Xiao, Shengguo Xia, Deng Feng, and Liangliang Tang, "Experimental study of armature melt wear in solid armature railgun," IEEE Transactions on Plasma Science, Vol. 43, No. 5, 1142-1146, 2015.
doi:10.1109/tps.2015.2418784

19. Jaeger, J. C., "Moving sources of heat and the temperature at sliding contacts," Journal and proceedings of the Royal Society of New South Wales, Vol. 76, No. 3, 203-224, 1942.
doi:10.5962/p.360338

20. Siopis, M. J. and R. W. Neu, "Wear at high sliding speeds and high contact pressures," Wear, Vol. 342, 356-363, 2015.
doi:10.1016/j.wear.2015.09.010

21. Yao, J. and Q. Fu, "Heat partition process at sliding electrical contact interfaces with high-speed and large current," Transactions of China Electrotechnical Society, Vol. 39, No. 17, 5497-5507, 2024.
doi:10.19595/j.cnki.1000-6753.tces.231136

22. Chen, Yun, Weidong Xu, Weiqun Yuan, Y. Zhao, P. Yan, and G. Lan, "Sliding electrical contacts between aluminum armature and different material rails in railgun," High Voltage Engineering, Vol. 39, No. 4, 937-942, 2013.
doi:10.3969/j.issn.1003-6520.2013.04.025

23. Bayati, M. Sajjad, Asghar Keshtkar, and Ahmad Keshtkar, "Thermal computation in railgun by hybrid time domain technique 3-D-FEM-IEM," IEEE Transactions on Plasma Science, Vol. 39, No. 1, 18-21, 2011.
doi:10.1109/tps.2010.2070847

24. Hsieh, K., "A Lagrangian formulation for mechanically, thermally coupled electromagnetic diffusive processes with moving conductors," IEEE Transactions on Magnetics, Vol. 31, No. 1, 604-609, 1995.
doi:10.1109/20.364626

25. Bayati, M. Sajjad and Kambiz Amiri, "Study of various C-shaped armatures in electromagnetic launcher," Applied Computational Electromagnetics Society Journal (ACES), Vol. 30, No. 9, 1029-1034, 2021.

26. Bayati, Mohammad Sajjad and Asghar Keshtkar, "Study of the current distribution, magnetic field, and inductance gradient of rectangular and circular railguns," IEEE Transactions on Plasma Science, Vol. 41, No. 5, 1376-1381, 2013.
doi:10.1109/tps.2013.2251477

27. Sun, Jian, Junsheng Cheng, Qiuliang Wang, Ling Xiong, Yuantao Cong, and Yichen Wang, "Numerical simulation of melt-wave erosion in 2-D solid armature," IEEE Transactions on Plasma Science, Vol. 50, No. 4, 1032-1039, 2022.
doi:10.1109/tps.2022.3158526

28. Tang, Bo, Yingtao Xu, Qinghua Lin, and Baoming Li, "Synergy of melt-wave and electromagnetic force on the transition mechanism in electromagnetic launch," IEEE Transactions on Plasma Science, Vol. 45, No. 7, 1361-1367, 2017.
doi:10.1109/tps.2017.2705220