Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-02
SAR Aircraft Detection Network Based on Multi-Branch Collaborative Calibration and Feature Enhancement
By
Progress In Electromagnetics Research C, Vol. 160, 175-182, 2025
Abstract
Aircraft target detection in synthetic aperture radar (SAR) images faces numerous challenges, primarily including weak contrast, diverse morphologies, and faint signals, which are even more pronounced in complex backgrounds. Meanwhile, practical deployment environments are constrained by limited computational resources and energy consumption, making it essential to balance detection accuracy with model lightweight design. To address this, this paper proposes a lightweight detection network that integrates multi-branch feature enhancement. First, a Parallel Aggregation and Calibration (PAC) module is designed to achieve collaborative modeling of local and global information through multi-scale dilated convolutions; second, a Moment Channel Attention (MCA) module based on higher-order statistical features is introduced to enhance the model's sensitivity to weak signals and target boundaries; finally, during the network fusion stage, the branch calibration connections in the PAC module are removed, and a frequency-domain-driven Efficient Discriminative Frequency domain-based FFN (EDFFN) module is incorporated to improve detailed representation of low-contrast and blurred targets. Experimental results on the SAR-Aircraft-1.0 dataset demonstrate that the proposed method achieves 93.94% mAP, while reducing model parameters by 56% and computational complexity by 36% compared to YOLOv12s, effectively balancing performance and lightweight requirements.
Citation
Zengyuan Guo, Wei Xu, Pingping Huang, Weixian Tan, and Zhiqi Gao, "SAR Aircraft Detection Network Based on Multi-Branch Collaborative Calibration and Feature Enhancement," Progress In Electromagnetics Research C, Vol. 160, 175-182, 2025.
doi:10.2528/PIERC25081002
References

1. Zhang, Qingjun, Huangjiang Fan, Yuxiao Qin, and Yashi Zhou, "Advances in interferometric synthetic aperture radar technology and systems and recent advances in Chinese SAR missions," Sensors, Vol. 25, No. 15, 4616, 2025.
doi:10.3390/s25154616

2. Yoon, Seokchan, Moonseok Kim, Mooseok Jang, Youngwoon Choi, Wonjun Choi, Sungsam Kang, and Wonshik Choi, "Deep optical imaging within complex scattering media," Nature Reviews Physics, Vol. 2, No. 3, 141-158, 2020.
doi:10.1038/s42254-019-0143-2

3. Liu, Tao, Ziyuan Yang, Yanni Jiang, and Gui Gao, "Review of ship detection in polarimetric synthetic aperture imagery," Journal of Radars, Vol. 10, No. 1, 1-19, 2021.
doi:10.12000/JR20155

4. Hu, Cheng, Zhiyang Chen, Yuanhao Li, Xichao Dong, and Stephen Hobbs, "Research progress on geosynchronous synthetic aperture radar," Fundamental Research, Vol. 1, No. 3, 346-363, 2021.
doi:10.1016/j.fmre.2021.04.008

5. Kıvanç, Ercan, Gülfem Tuzkaya, and Özalp Vayvay, "Safety management system and risk-based approach in aviation maintenance: A systematic literature review," Safety Science, Vol. 184, 106755, 2025.
doi:10.1016/j.ssci.2024.106755

6. Ahmed, Shams Forruque, Md. Sakib Bin Alam, Maruf Hassan, Mahtabin Rodela Rozbu, Taoseef Ishtiak, Nazifa Rafa, M. Mofijur, A. B. M. Shawkat Ali, and Amir H. Gandomi, "Deep learning modelling techniques: Current progress, applications, advantages, and challenges," Artificial Intelligence Review, Vol. 56, No. 11, 13521-13617, 2023.
doi:10.1007/s10462-023-10466-8

7. Singh, Prabhishek and Raj Shree, "Analysis and effects of speckle noise in SAR images," 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA) (Fall), 1-5, Bareilly, India, 2016.
doi:10.1109/icaccaf.2016.7748978

8. Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artificial Intelligence Review, Vol. 53, No. 8, 5455-5516, 2020.
doi:10.1007/s10462-020-09825-6

9. Xiao, Xiayang, Hecheng Jia, Penghao Xiao, and Haipeng Wang, "Aircraft detection in SAR images based on peak feature fusion and adaptive deformable network," Remote Sensing, Vol. 14, No. 23, 6077, 2022.
doi:10.3390/rs14236077

10. Kang, Yuzhuo, Zhirui Wang, Haoyu Zuo, Yidan Zhang, Zhujun Yang, Xian Sun, and Kun Fu, "ST-Net: Scattering topology network for aircraft classification in high-resolution SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 1-17, 2023.
doi:10.1109/tgrs.2023.3236987

11. Zhao, Chenxi, Siqian Zhang, Ru Luo, Sijia Feng, and Gangyao Kuang, "Scattering features spatial-structural association network for aircraft recognition in SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 20, 1-5, 2023.
doi:10.1109/lgrs.2023.3280442

12. Zhou, Jie, Chao Xiao, Bo Peng, Zhen Liu, Li Liu, Yongxiang Liu, and Xiang Li, "DiffDet4SAR: Diffusion-based aircraft target detection network for SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 21, 1-5, 2024.
doi:10.1109/lgrs.2024.3386020

13. Islam, Md. Tauhidul and Lei Xing, "Deciphering the feature representation of deep neural networks for high-performance AI," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 46, No. 8, 5273-5287, 2024.
doi:10.1109/tpami.2024.3363642

14. Rodriguez-Conde, Ivan, Celso Campos, and Florentino Fdez-Riverola, "Optimized convolutional neural network architectures for efficient on-device vision-based object detection," Neural Computing and Applications, Vol. 34, No. 13, 10469-10501, 2022.
doi:10.1007/s00521-021-06830-w

15. Zhang, Songming, Yuxiao Luo, Ziyu Lyu, and Xiaofeng Chen, "ShiftKD: Benchmarking knowledge distillation under distribution shift," Neural Networks, Vol. 192, 107838, 2025.
doi:10.1016/j.neunet.2025.107838

16. Wu, Hailang, Hanbo Sang, Zenghui Zhang, and Weiwei Guo, "LRMSNet: A new lightweight detection algorithm for multi-scale SAR objects," Remote Sensing, Vol. 16, No. 12, 2082, Jun. 2024.
doi:10.3390/rs16122082

17. Luo, Ru, Lifu Chen, Jin Xing, Zhihui Yuan, Siyu Tan, Xingmin Cai, and Jielan Wang, "A fast aircraft detection method for SAR images based on efficient bidirectional path aggregated attention network," Remote Sensing, Vol. 13, No. 15, 2940, 2021.
doi:10.3390/rs13152940

18. Luo, Ru, Qishan He, Lingjun Zhao, Siqian Zhang, Gangyao Kuang, and Kefeng Ji, "Geospatial contextual prior-enabled knowledge reasoning framework for fine-grained aircraft detection in panoramic SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 62, 2024.
doi:10.1109/tgrs.2024.3487780

19. Zhu, Wenbo, Liu Zhang, Chunqiang Lu, Guowei Fan, Ying Song, Jianbo Sun, and Xueying Lv, "FEMSFNet: Feature enhancement and multi-scales fusion network for SAR aircraft detection," Remote Sensing, Vol. 16, No. 9, 1589, 2024.
doi:10.3390/rs16091589

20. Yang, C., G. Q. Gong, C. Liu, J. W. Deng, and Y. X. Ye, "RMSOConvNeXt: A lightweight CNN network for robust SAR and optical image matching under strong noise interference," IEEE Transactions on Geoscience and Remote Sensing, Vol. 63, 2025.
doi:10.1109/tgrs.2025.3550936

21. Jiang, Yangbo, Zhiwei Jiang, Le Han, Zenan Huang, and Nenggan Zheng, "MCA: Moment channel attention networks," Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38, No. 3, 2579-2588, Vancouver, Canada, Feb. 2024.
doi:10.1609/aaai.v38i3.28035

22. Kong, Lingshun, Jiangxin Dong, Jinhui Tang, Ming-Hsuan Yang, and Jinshan Pan, "Efficient visual state space model for image deblurring," 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12710-12719, Nashville, TN, USA, 2025.
doi:10.1109/cvpr52734.2025.01186

23. Fernandez, Alfredo and Ankur Mali, "TeLU activation function for fast and stable deep learning," arXiv:2412.20269, 2024.

24. Wang, Zhirui, Yuzhuo Kang, Xuan Zeng, Yuelei Wang, Ting Zhang, and Xian Sun, "SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset," Journal of Radars, Vol. 12, No. 4, 906-922, 2023.
doi:10.12000/JR23043