Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-12
Integral Sliding Mode Speed Control of PMSM Based on Novel Fuzzy Exponential Reaching Law
By
Progress In Electromagnetics Research C, Vol. 163, 50-59, 2026
Abstract
To enhance the speed control performance of permanent magnet synchronous motor (PMSM) drive systems, a novel sliding mode control (SMC) strategy based on a new fuzzy exponential reaching law (NFERL) is proposed. The law enhances the traditional exponential reaching law by introducing a system-state-dependent power term and a fuzzy term that adapts the reaching speed based on the sliding mode function. A hyperbolic tangent function replaces the high-frequency switching term to suppress chattering. This control strategy helps reduce current ripples and torque pulsations, and improves the stability and response speed of system operation. Additionally, to address the issue that the system is susceptible to unknown disturbances, a sliding mode disturbance observer (SMDO) is designed to estimate the total disturbance of the system, and the estimated disturbance is fed forward into the composite speed controller. Finally, the introduced control strategy is validated using MATLAB/Simulink simulations and a motor experimental platform. Both simulated and experimental results demonstrate that the new reaching law effectively reduces the startup speed overshoot of the PMSM compared to the traditional law, while also achieving faster convergence, reduced chattering, and superior anti-disturbance performance.
Citation
Zhonggen Wang, Jinpeng Ma, and Wenyan Nie, "Integral Sliding Mode Speed Control of PMSM Based on Novel Fuzzy Exponential Reaching Law," Progress In Electromagnetics Research C, Vol. 163, 50-59, 2026.
doi:10.2528/PIERC25081301
References

1. Zhang, Zhang, Xiaodong Yang, Weiyu Wang, Kaiwen Chen, Norbert Chow Cheung, and Jianfei Pan, "Enhanced sliding mode control for PMSM speed drive systems using a novel adaptive sliding mode reaching law based on exponential function," IEEE Transactions on Industrial Electronics, Vol. 71, No. 10, 11978-11988, 2024.
doi:10.1109/tie.2023.3347845

2. Saleh, S. A., E. Ozkop, B. Nahid-Mobarakeh, A. Rubaai, K. M. Muttaqi, and S. Pradhan, "Survivability-based protection for electric motor drive systems --- Part II: Three phase permanent magnet synchronous motor drives," IEEE Transactions on Industry Applications, Vol. 59, No. 3, 2760-2771, 2023.
doi:10.1109/tia.2023.3234518

3. Zhu, Xiaoyong, Li Zhang, Xianghua Xiao, Christopher H. T. Lee, and Hongjie Que, "Adjustable-flux permanent magnet synchronous motor sensorless drive system based on parameter-sensitive adaptive online decoupling control strategy," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 501-511, 2023.
doi:10.1109/tte.2022.3182820

4. Yu, Yanlei, Yulong Pei, Feng Chai, and Martin Doppelbauer, "Performance comparison between permanent magnet synchronous motor and vernier motor for in-wheel direct drive," IEEE Transactions on Industrial Electronics, Vol. 70, No. 8, 7761-7772, 2023.
doi:10.1109/tie.2022.3212430

5. Wang, Xiaoji, Daohan Wang, Chen Peng, Bingdong Wang, and Xiuhe Wang, "Torsional vibration analysis and suppression of interior permanent magnet synchronous motor with staggered segmented rotor for electric vehicles," IEEE Transactions on Transportation Electrification, Vol. 10, No. 3, 6285-6294, 2024.
doi:10.1109/tte.2023.3333906

6. Xu, Jinquan, Wenbo Jin, Hong Guo, and Boyi Zhang, "Improved optimal fault-tolerant control considering reluctance torque for five-phase IPMSM in aerospace electric actuation application," IEEE Transactions on Industrial Electronics, Vol. 71, No. 10, 11785-11795, 2024.
doi:10.1109/tie.2024.3360625

7. Zhang, Wei, Yong Yang, Mingdi Fan, Liqun He, Aiming Ji, Yang Xiao, Huiqing Wen, Xinan Zhang, Tao Yang, Saad Mekhilef, and Jose Rodriguez, "An improved model predictive torque control for PMSM drives based on discrete space vector modulation," IEEE Transactions on Power Electronics, Vol. 38, No. 6, 7535-7545, 2023.
doi:10.1109/tpel.2023.3257399

8. Chen, Long, Hongming Zhang, Hai Wang, Ke Shao, Guangyi Wang, and Amirmehdi Yazdani, "Continuous adaptive fast terminal sliding mode-based speed regulation control of PMSM drive via improved super-twisting observer," IEEE Transactions on Industrial Electronics, Vol. 71, No. 5, 5105-5115, 2024.
doi:10.1109/tie.2023.3288147

9. Zhang, Sai, Anwen Shen, Xin Luo, Qipeng Tang, and Zicheng Li, "An adaptive strategy for PMSM-based disturbance estimation and online parameter identification," IEEE/ASME Transactions on Mechatronics, Vol. 29, No. 4, 2522-2533, 2024.
doi:10.1109/tmech.2023.3333382

10. Wang, Fengxiang, Long He, Jinsong Kang, Ralph Kennel, and José Rodríguez, "Adaptive model predictive current control for PMLSM drive system," IEEE Transactions on Industrial Electronics, Vol. 70, No. 4, 3493-3502, 2023.
doi:10.1109/tie.2022.3179550

11. Zhang, Xiaoguang, Zheng Liu, Pinjia Zhang, and Yongchang Zhang, "Model predictive current control for PMSM drives based on nonparametric prediction model," IEEE Transactions on Transportation Electrification, Vol. 10, No. 1, 711-719, 2024.
doi:10.1109/tte.2023.3293512

12. Li, Zheng, Zi-Hao Zhang, Jin-Song Wang, Zhi-Bang Yan, Xiao-Qiang Guo, and He-Xu Sun, "Nonsingular fast terminal sliding mode control strategy for PMLSM based on disturbance compensation," Journal of Electrical Engineering & Technology, Vol. 19, No. 3, 1331-1342, 2024.
doi:10.1007/s42835-023-01590-0

13. Huang, Zhengguo, Mou Chen, and Mihai Lungu, "Interconnected disturbance observer-based tracking control for permanent magnet synchronous motors," IEEE Transactions on Control Systems Technology, Vol. 31, No. 6, 2953-2960, 2023.
doi:10.1109/tcst.2023.3285358

14. Wu, Jingxiu, Yong Zhao, Yong Kong, Qiang Liu, and Lei Zhang, "Hierarchical nonsingular terminal sliding mode control with finite-time disturbance observer for PMSM speed regulation system," IEEE Transactions on Transportation Electrification, Vol. 10, No. 3, 4757-4765, 2024.
doi:10.1109/tte.2023.3318411

15. Cheng, Chang, Lu Liu, and Shihong Ding, "Iterative learning observer-based composite SOSM control for PMSM speed regulation problem with mismatched disturbances," IEEE Transactions on Power Electronics, Vol. 39, No. 8, 9470-9480, 2024.
doi:10.1109/tpel.2024.3398775

16. Liu, Jun-Feng, Yuan Feng, Jian-Yong Yu, Jing-Wei Tang, and Lei Zhang, "Fractional order second-order sliding mode MRASO for SPMSM," Measurement and Control, Vol. 57, No. 7, 863-870, 2024.
doi:10.1177/00202940241227126

17. Guo, Xin, Shoudao Huang, Yu Peng, Kaiyuan Lu, Sheng Huang, Derong Luo, and Xuan Wu, "An improved integral sliding mode control for PMSM drives based on new variable rate reaching law with adaptive reduced-order PI observer," IEEE Transactions on Transportation Electrification, Vol. 9, No. 3, 4503-4516, 2023.
doi:10.1109/tte.2023.3242452

18. Wang, Lijun, Jiwen Zhao, Zixiang Yu, Zhenbao Pan, and Zhilei Zheng, "High-precision position control of PMLSM using fast recursive terminal sliding mode with disturbance rejection ability," IEEE Transactions on Industrial Informatics, Vol. 20, No. 2, 2577-2588, 2024.
doi:10.1109/tii.2023.3295570

19. Qu, Ying, Bin Zhang, Hairong Chu, Honghai Shen, Jingzhong Zhang, and Xiaoxia Yang, "Sliding-mode anti-disturbance speed control of permanent magnet synchronous motor based on an advanced reaching law," ISA Transactions, Vol. 139, 436-447, 2023.
doi:10.1016/j.isatra.2023.04.016

20. Kong, Delin, Haiwei Cai, and Hao Zhai, "Double-layer fast terminal sliding mode predictive control for PMSM speed regulation," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 12, No. 5, 4876-4887, 2024.
doi:10.1109/jestpe.2024.3432808

21. Yim, Jaeyun, Sesun You, Youngwoo Lee, and Wonhee Kim, "Chattering attenuation disturbance observer for sliding mode control: Application to permanent magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 70, No. 5, 5161-5170, 2023.
doi:10.1109/tie.2022.3189074

22. Li, Tong, Xinkai Chen, Jiapeng Liu, and Jinpeng Yu, "Fixed-time adaptive fuzzy control via filter and observer for uncertain nonlinear systems with disturbances and its application in PMSMs," IEEE Transactions on Industrial Electronics, Vol. 71, No. 11, 14712-14721, 2024.
doi:10.1109/tie.2024.3379644

23. Liu, Dejun, Junjie Han, Guangda Chen, Yanming Cheng, Xinyue Liang, and Chao Song, "Fuzzy self-tuning fractional order PD permanent magnet synchronous motor speed control based on torque compensation," Scientific Reports, Vol. 15, No. 1, 2141, 2025.
doi:10.1038/s41598-024-84768-4