Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-18
Inertial Forces from Relativistic and Thermal Effects of Electromagnetic Frequency Sweeps
By
Progress In Electromagnetics Research C, Vol. 163, 139-148, 2026
Abstract
We investigate the thermal and relativistic effects produced when an electrically conductive object is moving in tandem with a source of a variable electromagnetic field. First, we derive an energy–frequency relation to quantify the temperature rise induced by such a field. This relation is then combined with the Lorentz-Fitzgerald contraction and time dilation from special relativity to identify a force, Fc, required to reconcile energy conservation between stationary and moving observers. We further relate Fc to the relativistic energy of a moving mass, extending the analysis to objects without electrical conductivity. This connection leads to the prediction of an inertial force Fcf generated by the frequency sweep of an electromagnetic wave (whether caused by relative motion or by internal modulation) that interacts with mass regardless of its electrical properties.
Citation
Roberto Bernardo Benedicto Ovando, "Inertial Forces from Relativistic and Thermal Effects of Electromagnetic Frequency Sweeps," Progress In Electromagnetics Research C, Vol. 163, 139-148, 2026.
doi:10.2528/PIERC25082005
References

1. Peregoudov, D. V., "Relativistic length contraction and time dilation as dynamical phenomena," European Journal of Physics, Vol. 41, No. 1, 015602, Dec. 2019.
doi:10.1088/1361-6404/ab454a

2. Redžić, Dragan V., "Image of a moving sphere and the FitzGerald-Lorentz contraction," European Journal of Physics, Vol. 25, No. 1, 123, 2004.
doi:10.1088/0143-0807/25/1/015

3. Heaviside, Oliver, "XXXIX. On the electromagnetic effects due to the motion of electrification through a dielectric," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 27, No. 167, 324-339, 1889.
doi:10.1080/14786448908628362

4. Searle, G. F. C., "On the steady motion of an electrified ellipsoid," Proceedings of the Physical Society of London, Vol. 15, No. 1, 264, 1896.
doi:10.1088/1478-7814/15/1/323

5. Le Bellac, M. and J. M. Lévy-Leblond, "Galilean electromagnetism," Il Nuovo Cimento B (1971-1996), Vol. 14, No. 2, 217-234, Apr. 1973.
doi:10.1007/bf02895715

6. De Montigny, M. and G. Rousseaux, "On the electrodynamics of moving bodies at low velocities," European Journal of Physics, Vol. 27, No. 4, 755, 2006.
doi:10.1088/0143-0807/27/4/007

7. Harsha, N. R. Sree, Anupama Prakash, and D. P. Kothari, The Foundations of Electric Circuit Theory, IOP Publishing, 2016.
doi:10.1088/978-0-7503-1266-0

8. Koivurova, Matias, Charles W. Robson, and Marco Ornigotti, "Time-varying media, relativity, and the arrow of time," Optica, Vol. 10, No. 10, 1398-1406, 2023.
doi:10.1364/optica.494630

9. Incropera, Frank P. and David P. DeWitt, Fundamentos de Transferencia de Calor, 4th Ed., Prentice Hall, 1999.

10. John, Davies and Peter Simpson, Induction Heating Handbook, McGraw-Hill, London, 1979.

11. Jackson, John David, Classical Electrodynamics, 3rd Ed., Wiley, 2021.

12. Ulaby, Fawwaz Tayssir and Umberto Ravaioli, Fundamentals of Applied Electromagnetics, Vol. 7, Pearson Education UK, 2015.

13. Ovando-Martinez, R. B. B., C. Hernandez, and M. A. Arjona, "An adaptive time-stepping algorithm in weakly coupled electromagnetics-thermal-circuit modeling," Applied Computational Electromagnetics Society Journal (ACES), Vol. 28, No. 9, 871-878, Sep. 2021.

14. Ovando-Martinez, R. B. B., M. A. Arjona Lopez, and C. Hernandez Flores, "A finite-element variable time-stepping algorithm for solving the electromagnetic diffusion equation," IEEE Transactions on Magnetics, Vol. 48, No. 2, 647-650, Feb. 2012.
doi:10.1109/tmag.2011.2177448

15. Hernandez, C., R. B. B. Ovando-Martinez, and M. A. Arjona, "Application of tensor analysis to the finite element method," Applied Mathematics and Computation, Vol. 219, No. 9, 4625-4636, Jan. 2013.
doi:10.1016/j.amc.2012.10.074

16. Ovando, Roberto B. B., Apparatus and method for leakage electromagnetic field sensing in electrical inductive equipment, US Patent 11,047,895, 2021.

17. Misner, C. W., K. S. Thorne, and J. A. Archibald, Gravitation, W. H. Freeman and Company, New York, 1973.

18. Thim, H. W., "Absence of the relativistic transverse Doppler shift at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 5, 1660-1664, Oct. 2003.
doi:10.1109/tim.2003.817916

19. Johnson, Montgomery H. and Edward Teller, "Intensity changes in the Doppler effect," Proceedings of the National Academy of Sciences, Vol. 79, No. 4, 1340, Feb. 1982.
doi:10.1073/pnas.79.4.1340

20. Rindler, W., Introduction to Special Relativity, 2nd Ed., Oxford University Press, United States , 1991.

21. Valagiannopoulos, Constantinos A. and Andrea Alú, "The role of reactive energy in the radiation by a dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3736-3741, Aug. 2015.
doi:10.1109/tap.2015.2436410

22. Lee, Hyoung-In, "Near-field behaviors of internal energy flows of free-space electromagnetic waves induced by electric point dipoles," Optics, Vol. 3, No. 3, 313-337, Sep. 2022.
doi:10.3390/opt3030029

23. Braver, I. M., P. Sh. Fridberg, Kh. L. Garb, and I. M. Yakover, "Electromagnetic field near the common edge of a perfectly conducting wedge and a resistive half-plane," ArXiv Preprint ArXiv:2408.13916, 2024.
doi:10.48550/arXiv.2408.13916

24. Valagiannopoulos, Constantine A., "On smoothening the singular field developed in the vicinity of metallic edges," International Journal of Applied Electromagnetics and Mechanics, Vol. 31, No. 2, 67-77, Oct. 2009.
doi:10.3233/jae-2009-1048

25. Einstein, Albert, "Does the inertia of a body depend upon its energy-content," Annalen Der Physik, Vol. 18, No. 13, 639-641, 1905.

26. Tolman, R. C., The Theory of the Relativity of Motion, University of California Press, Berkelye, CA, 1917.

27. Rindler, Wolfgang, Relativity: Special, General, and Cosmological, Oxford University Press, 2006.

28. Stoev, Iliya D., Benjamin Seelbinder, Elena Erben, Nicola Maghelli, and Moritz Kreysing, "Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap," eLight, Vol. 1, No. 1, 7, Dec. 2021.
doi:10.1186/s43593-021-00007-7