Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-29
Optimization of Multilayer Microwave Absorbers Using Hybrid Multi-Strategy Improved Enzyme Action Optimizer
By
Progress In Electromagnetics Research C, Vol. 162, 157-165, 2025
Abstract
This paper proposes a Hybrid Multi-Strategy Enhanced Enzyme Action Optimizer (HSEAO) for designing multilayer broadband microwave absorbers under vertical irradiation conditions. The optimization objective is to minimize the absorber's reflection coefficient within a specified frequency range by selecting suitable material layers from a literature database. The performance of the Enzyme Action Optimizer (EAO) has been improved by introducing three enhancement strategies including Quasi-Opposition Based Learning (QOBL), adaptive coefficient, and leader follower. The effectiveness of these enhancement strategies is validated through simulation examples of five-layer and seven-layer microwave absorbers, achieving maximum reflection losses of -25.7975 dB and -18.1965 dB, respectively. Results demonstrate that HSEAO outperforms other heuristic algorithms in minimizing reflection coefficients for microwave absorber design. CST simulations further demonstrate that microwave absorbers designed by HSEAO achieve lower reflection losses.
Citation
Tongyu Liu, Wei-Bin Kong, Yiming Zong, Lei Wang, Yuanyuan Wang, Wenwen Yang, and Yidong Wei, "Optimization of Multilayer Microwave Absorbers Using Hybrid Multi-Strategy Improved Enzyme Action Optimizer," Progress In Electromagnetics Research C, Vol. 162, 157-165, 2025.
doi:10.2528/PIERC25082105
References

1. Pang, Huifang, Yuping Duan, Lingxi Huang, Lulu Song, Jia Liu, Tuo Zhang, Xuan Yang, Jiangyong Liu, Xinran Ma, Jingru Di, and Xiaoji Liu, "Research advances in composition, structure and mechanisms of microwave absorbing materials," Composites Part B: Engineering, Vol. 224, 109173, 2021.
doi:10.1016/j.compositesb.2021.109173

2. Panwar, Ravi and Jung Ryul Lee, "Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications," Functional Composites and Structures, Vol. 1, No. 3, 032001, 2019.
doi:10.1088/2631-6331/ab2863

3. Panwar, Ravi, Smitha Puthucheri, Dharmendra Singh, and Vijaya Agarwala, "Design of ferrite-graphene-based thin broadband radar wave absorber for stealth application," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015.
doi:10.1109/tmag.2015.2454431

4. Razek, Adel, "Assessment of a functional electromagnetic compatibility analysis of near-body medical devices subject to electromagnetic field perturbation," Electronics, Vol. 12, No. 23, 4780, 2023.
doi:10.3390/electronics12234780

5. Peng, Tian, Chengkai Zhu, Tianyi Zhou, Bin Zhang, Dexin Ye, Xiaojun Li, and Lixin Ran, "A compact microwave imager integrated with a miniaturized dual-angle anechoic chamber," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 11, 4831-4839, 2021.
doi:10.1109/tmtt.2021.3098772

6. Vidaković, Marin and Davor Vinko, "Hardware-based methods for electronic device protection against invasive and non-invasive attacks," Electronics, Vol. 12, No. 21, 4507, 2023.
doi:10.3390/electronics12214507

7. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 6, 1024-1031, 1993.
doi:10.1109/22.238519

8. Roy, Subhanwit, Souptik Dutta Roy, Jyotirmay Tewary, Ananya Mahanti, and Gautam Mahanti, "Particle swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence," Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015.
doi:10.2528/pierb14122602

9. Chamaani, Somayyeh, Seyed Abdullah Mirtaheri, and Mahdi Aliyari Shooredeli, "Design of very thin wide band absorbers using modified local best particle swarm optimization," AEU --- International Journal of Electronics and Communications, Vol. 62, No. 7, 549-556, 2008.
doi:10.1016/j.aeue.2007.06.001

10. Dib, Nihad I., Mujahed Asi, and Ayman Sabbah, "On the optimal design of multilayer microwave absorbers," Progress In Electromagnetics Research C, Vol. 13, 171-185, 2010.
doi:10.2528/pierc10041310

11. Roy, Subhanwit, Ananya Mahanti, Souptik Dutta Roy, and G. K. Mahanti, "Comparison of evolutionary algorithms for optimal design of broadband multilayer microwave absorber for normal and oblique incidence," Applied Computational Electromagnetics Society Journal (ACES), Vol. 31, No. 1, 79-84, 2021.

12. Lu, Yuting and Yongquan Zhou, "Design of multilayer microwave absorbers using hybrid binary lightning search algorithm and simulated annealing," Progress In Electromagnetics Research B, Vol. 78, 75-90, 2017.
doi:10.2528/pierb17060302

13. Kankılıç, Sueda and Esin Karpat, "Optimization of multilayer absorbers using the bald eagle optimization algorithm," Applied Sciences, Vol. 13, No. 18, 10301, 2023.
doi:10.3390/app131810301

14. Zong, Yi Ming, Wei Bin Kong, Jia Pan Li, Lei Wang, Hao Nan Zhang, Feng Zhou, and Zi Yao Cheng, "Optimization of multilayer microwave absorbers using multi-strategy improved gold rush optimizer," Applied Computational Electromagnetics Society Journal (ACES), Vol. 39, No. 8, 708-717, 2024.
doi:10.13052/2024.aces.j.390806

15. Liu, Sixing, Yilin Zhang, Hao Wang, Fan Wu, Shifei Tao, and Yujing Zhang, "Efficient design of broadband and low-profile multilayer absorbing materials on cobalt-iron magnetic alloy doped with rare earth element," Nanomaterials, Vol. 14, No. 13, 1107, 2024.
doi:10.3390/nano14131107

16. Wang, Tao, Geng Chen, Jiahao Zhu, Hang Gong, Limin Zhang, and Hongjing Wu, "Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption," Journal of Colloid and Interface Science, Vol. 595, 1-5, 2021.
doi:10.1016/j.jcis.2021.03.132

17. Toktas, Abdurrahim, Deniz Ustun, and Mustafa Tekbas, "Multi-objective design of multi-layer radar absorber using surrogate-based optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 8, 3318-3329, 2019.
doi:10.1109/tmtt.2019.2922600

18. Rodan, Ali, Abdel-Karim Al-Tamimi, Loai Al-Alnemer, Seyedali Mirjalili, and Peter Tiňo, "Enzyme action optimizer: A novel bio-inspired optimization algorithm," The Journal of Supercomputing, Vol. 81, No. 5, 686, 2025.
doi:10.1007/s11227-025-07052-w

19. Wang, Zhendong, Lili Huang, Shuxin Yang, Dahai Li, Daojing He, and Sammy Chan, "A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization," Alexandria Engineering Journal, Vol. 81, 469-488, 2023.
doi:10.1016/j.aej.2023.09.042

20. Wang, Shengliang, Genyou Liu, Ming Gao, Shilong Cao, Aizhi Guo, and Jiachen Wang, "Heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer with two mutation operators," Information Sciences, Vol. 540, 175-201, 2020.
doi:10.1016/j.ins.2020.06.027

21. Ghasemi, Mojtaba, Mohamed Deriche, Pavel Trojovský, Zulkefli Mansor, Mohsen Zare, Eva Trojovská, Laith Abualigah, Absalom E. Ezugwu, and Soleiman Kadkhoda Mohammadi, "An efficient bio-inspired algorithm based on humpback whale migration for constrained engineering optimization," Results in Engineering, Vol. 25, 104215, 2025.
doi:10.1016/j.rineng.2025.104215

22. Yao, Huiming, Jiapeng Yang, Han Li, Jianchun Xu, and Ke Bi, "Optimal design of multilayer radar absorbing materials: A simulation-optimization approach," Advanced Composites and Hybrid Materials, Vol. 6, No. 1, 43, 2023.
doi:10.1007/s42114-023-00626-3

23. Yigit, Enes and Hüseyin Duysak, "Determination of optimal layer sequence and thickness for broadband multilayer absorber design using double-stage artificial bee colony algorithm," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 8, 3306-3317, 2019.
doi:10.1109/tmtt.2019.2919574

24. Warhekar, Pooja, Amitabha Bhattacharya, and Swati Neogi, "Designing thinner broadband multilayer radar absorbing material through novel formulation of cost function," IEEE Access, Vol. 11, 91016-91027, 2023.
doi:10.1109/access.2023.3308590