Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-06
Design a Type of Analog Beamforming MIMO System Based on a Rotman Lens with an Ultra-Wideband (UWB) for 5G mmWave Applications
By
Progress In Electromagnetics Research C, Vol. 161, 169-177, 2025
Abstract
High frequency communication systems are critical for 5G networks, particularly in the millimeter-wave bands, where ultra-wideband (5G-UWB) performance is essential for high data rates and low latency. In this work, we propose, for the first time to the best of our knowledge, an ultra-wideband 5G MIMO beamforming module covering both the 28 and 60 GHz bands. The proposed design is based on a low-cost, low-profile Rotman Lens (RL) implemented on an FR4 substrate with a thickness of 1.6 mm and a dielectric constant of 4.3. The RL features five beam ports and seven array ports, with additional dummy ports introduced to minimize reflections and enhance adjacent beam port isolation across the full 5G-UWB range. Simulation results demonstrate excellent performance, with isolation and mutual coupling maintained below -25 dB between input beam ports and below -15 dB between array ports across the entire bandwidth. The VSWR remains below 2 for all ports. Although this work presents a single RL-based beamformer, it is envisioned as a building block within a larger hybrid MIMO architecture, where multiple lenses can be interconnected to support parallel data streams and spatial multiplexing. This modular approach enables flexible scaling to full MIMO operation while maintaining low cost and compactness. The proposed design is a strong candidate for 5G and mmWave applications, including hybrid beamforming systems, MIMO architectures, radar, and satellite communications. Comparative analysis with recent literature demonstrates its superior bandwidth and isolation performance.
Citation
Noureddine Boughaba, Ouarda Barkat, and Khaled Issa, "Design a Type of Analog Beamforming MIMO System Based on a Rotman Lens with an Ultra-Wideband (UWB) for 5G mmWave Applications," Progress In Electromagnetics Research C, Vol. 161, 169-177, 2025.
doi:10.2528/PIERC25082504
References

1. Joshi, Marvin, Kexin Hu, Charles A. Lynch, and Manos M. Tentzeris, "Achieving quasi-planar coverage: A concave meniscus lens-enhanced Rotman lens based mmID for ultra-long range IoT applications," IEEE Antennas and Wireless Propagation Letters, Vol. 24, No. 3, 741-745, 2025.
doi:10.1109/lawp.2024.3514914

2. Mohamed, Hesham A. and Mohamed Aboualalaa, "A low profile super UWB-MIMO antenna with d-shaped for satellite communications, 5G and beyond applications," Scientific Reports, Vol. 15, No. 1, 15660, 2025.
doi:10.1038/s41598-025-96017-3

3. Azari, Abolfazl, Anja Skrivervik, and Hadi Aliakbarian, "Design of a novel wide-angle Rotman lens beamformer for 5G mmWave applications," Scientific Reports, Vol. 14, No. 1, 1245, 2024.
doi:10.1038/s41598-024-51733-0

4. Najafabadi, Amir Mohsen Ahmadi, Faruk Ballipinar, Melih Can Tasdelen, Abdulkadir Uzun, Murat Kaya Yapici, Anja Skrivervik, and Ibrahim Tekin, "Wide scan angle multibeam conformal antenna array with novel feeding for mm-wave 5G applications," Microelectronic Engineering, Vol. 294, 112261, 2024.
doi:10.1016/j.mee.2024.112261

5. Ali, M. Saad, Hamna Naveed, Muhammad Ali Babar Abbasi, Nosherwan Shoaib, and Vincent F. Fusco, "Substrate-integrated coaxial line (SICL) rotman lens beamformer for 5G/B5G applications," Electronics, Vol. 12, No. 1, 69, 2023.
doi:10.3390/electronics12010069

6. Pant, Mohit and Leeladhar Malviya, "Design, developments, and applications of 5G antennas: A review," International Journal of Microwave and Wireless Technologies, Vol. 15, No. 1, 156-182, 2023.
doi:10.1017/s1759078722000095

7. Ali, Wael A. E., Mahmoud A. Abdelghany, and Ahmed A. Ibrahim, "Wideband and high gain elliptically-inspired 4 × 4 MIMO antenna for millimeter wave applications," Heliyon, Vol. 10, No. 20, e38697, 2024.
doi:10.1016/j.heliyon.2024.e38697

8. Najafabadi, Amir Mohsen Ahmadi, Firas Abdul Ghani, and Ibrahim Tekin, "Low-cost multibeam millimeter-wave array antennas for 5G mobile applications," IEEE Transactions on Vehicular Technology, Vol. 71, No. 12, 12450-12460, 2022.
doi:10.1109/tvt.2022.3198878

9. Azari, Abolfazl, Anja Skrivervik, Hadi Aliakbarian, and Ramezan Ali Sadeghzadeh, "A super wideband dual-polarized vivaldi antenna for 5G mmWave applications," IEEE Access, Vol. 11, 80761-80768, 2023.
doi:10.1109/access.2023.3300040

10. Saeed, Muhammad Asfar and Augustine O. Nwajana, "A review of beamforming microstrip patch antenna array for future 5G/6G networks," Frontiers in Mechanical Engineering, Vol. 9, 1288171, 2024.
doi:10.3389/fmech.2023.1288171

11. Issa, Khaled, Habib Fathallah, Muhammad A. Ashraf, Hamsakutty Vettikalladi, and Saleh Alshebeili, "Broadband high-gain antenna for millimetre-wave 60-GHz band," Electronics, Vol. 8, No. 11, 1246, 2019.
doi:10.3390/electronics8111246

12. Saleem, Ilyas, M. Ali Babar Abbasi, Nosherwan Shoaib, Subhas Mukhopadhyay, Hazer Inaltekin, and Syed Muzahir Abbas, "Mitigation of radiation loss in mmwave rotman lens beamformers," 2025 6th Australian Microwave Symposium (AMS), 1-2, Gold Coast, Australia, 2025.
doi:10.1109/AMS63679.2025.10937806

13. Rahimian, Ardavan, Yasir Alfadhl, and Akram Alomainy, "Analytical and numerical evaluations of flexible V-band Rotman lens beamforming network performance for conformal wireless subsystems," Progress In Electromagnetics Research B, Vol. 71, 77-89, 2016.
doi:10.2528/pierb16082605

14. Xiao, Zhenyu, Lipeng Zhu, Lin Bai, and Xiang-Gen Xia, Array Beamforming Enabled Wireless Communications, CRC Press, 2023.
doi:10.1201/9781003366362

15. Guo, Yingjie Jay and Richard W. Ziolkowski, Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications, Wiley, 2021.
doi:10.1002/9781119712947

16. Vashist, Shruti, M. K. Soni, and P. K. Singhal, "A review on the development of Rotman lens antenna," Chinese Journal of Engineering, Vol. 2014, No. 1, 385385, 2014.
doi:10.1155/2014/385385

17. Pezhman, Mohammad Mahdi, Abbas-Ali Heidari, and Ali Ghafoorzadeh-Yazdi, "A novel single layer SIW 6 × 6 beamforming network for 5G applications," AEU --- International Journal of Electronics and Communications, Vol. 155, 154380, 2022.
doi:10.1016/j.aeue.2022.154380

18. Lian, Ji-Wei, Yong-Ling Ban, Chunhua Xiao, and Zhe-Feng Yu, "Compact substrate-integrated 4 × 8 Butler matrix with sidelobe suppression for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 928-932, 2018.
doi:10.1109/lawp.2018.2825367

19. Cao, Yue, Kuo-Sheng Chin, Wenquan Che, Wanchen Yang, and Eric S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017.
doi:10.1109/lawp.2017.2757045

20. Hassanien, Mohamed A., Ronny Hahnel, and Dirk Plettemeier, "Wideband rotman lens beamforming technique for 5G wireless applications," 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), 1-5, Riyadh, Saudi Arabia, 2019.
doi:10.1109/CAIS.2019.8769475

21. Kim, Dong-Woo and Soon-Soo Oh, "A volumetric waveguide-type rotman lens antenna for three-dimensional millimeter-wave beamforming," Sensors, Vol. 24, No. 9, 2884, 2024.
doi:10.3390/s24092884

22. Hong, Hayoung, Hongsoo Park, Kanghyeok Lee, Wonwoo Lee, Semin Jo, Junhyuk Yang, Changkun Park, Hojin Lee, and Sun K. Hong, "Ka-band Rotman lens-based retrodirective beamforming system for wireless power transfer," Journal of Electromagnetic Engineering and Science, Vol. 21, No. 5, 391-398, 2021.
doi:10.26866/jees.2021.5.r.47

23. Mujammami, Essa H. and Abdelrazik Sebak, "Analog beamforming system using rotman lens for 5G applications at 28 GHz," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 153-154, Atlanta, GA, USA, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8888493

24. Eid, Aline, Jimmy G. D. Hester, and Manos M. Tentzeris, "Rotman lens-based wide angular coverage and high-gain semipassive architecture for ultralong range mm-wave RFIDs," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 11, 1943-1947, 2020.
doi:10.1109/lawp.2020.3002924

25. Liang, Qiuyan, Baohua Sun, and Gaonan Zhou, "Miniaturization of Rotman lens using array port extension," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 3, 541-545, 2023.
doi:10.1109/lawp.2022.3217399

26. Sun, Bao-hua, Qiu-yan Liang, and Gao-nan Zhou, "Miniaturized Rotman lens with applications to wireless communication," Frontiers of Information Technology & Electronic Engineering, Vol. 21, No. 1, 144-158, 2020.
doi:10.1631/fitee.1900501

27. Attaran, Ali, Rashid Rashidzadeh, and Ammar Kouki, "60 GHz low phase error Rotman lens combined with wideband microstrip antenna array using LTCC technology," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5172-5180, 2016.
doi:10.1109/tap.2016.2618479

28. Yu, Yingrui, Hung Luyen, and Nader Behdad, "A wideband millimeter-wave Rotman lens multibeam array using substrate integrated coaxial line (SICL) technology," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7532-7542, 2021.
doi:10.1109/tap.2021.3090518

29. Lian, Ji-Wei, Yong-Ling Ban, and Y. Jay Guo, "Wideband dual-layer Huygens' metasurface for high-gain multibeam array antennas," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7521-7531, 2021.
doi:10.1109/tap.2021.3076669

30. Zhang, Haoran and Atif Shamim, "Wideband and wide beam scanning dual-polarized phased array antenna-in-package design for 5G applications," IEEE Open Journal of Antennas and Propagation, Vol. 5, No. 1, 140-152, 2024.
doi:10.1109/ojap.2023.3336762

31. Ikram, Muhammad, Kamel Sultan, Muhammad Faisal Lateef, and Abdulrahman S. M. Alqadami, "A road towards 6G communication --- A review of 5G antennas, arrays, and wearable devices," Electronics, Vol. 11, No. 1, 169, 2022.
doi:10.3390/electronics11010169

32. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, 1963.
doi:10.1109/tap.1963.1138114

33. Hansen, R. C., "Design trades for Rotman lenses," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 464-472, 1991.
doi:10.1109/8.81458

34. Smith, M. S., "Design considerations for Ruze and Rotman lenses," Radio and Electronic Engineer, Vol. 52, No. 4, 181-187, 1982.
doi:10.1049/ree.1982.0027

35. Simon, Peter, "Analysis and synthesis of Rotman lenses," 22nd AIAA International Communications Satellite Systems Conference & Exhibit 2004 (ICSSC), 3196, Monterey, CA, USA, May 2004.
doi:10.2514/6.2004-3196

36. Katagi, T., S. Mano, and S. Sato, "An improved design method of Rotman lens antennas," IEEE Transactions on Antennas and Propagation, Vol. 32, No. 5, 524-527, 1984.
doi:10.1109/tap.1984.1143353

37. Mujammami, Essa H., Islam Afifi, and Abdelrazik B. Sebak, "Optimum wideband high gain analog beamforming network for 5G applications," IEEE Access, Vol. 7, 52226-52237, 2019.
doi:10.1109/access.2019.2912119

38. Tekkouk, Karim, Mauro Ettorre, and Ronan Sauleau, "SIW Rotman lens antenna with ridged delay lines and reduced footprint," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 3136-3144, 2018.
doi:10.1109/tmtt.2018.2825374

39. Prihatiningtyas, N. N., K. Anwar, and A. A. Pramudita, "Microstrip rotman lens for mobile base station backbone in disaster area networks," International Journal on Advanced Science Engineering and Information Technology, Vol. 12, No. 4, 1327, 2022.

40. Ershadi, S. E., A. Keshtkar, A. Bayat, A. H. Abdelrahman, and H. Xin, "Rotman lens design and optimization for 5G applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1048-1057, 2018.
doi:10.1017/s1759078718000934

41. Liang, Qiuyan, Baohua Sun, Gaonan Zhou, Jianping Zhao, and Guanxi Zhang, "Design of compact Rotman lens using truncated ports with energy distribution slots," IEEE Access, Vol. 7, 120766-120773, 2019.
doi:10.1109/access.2019.2925000

42. Sethi, Waleed T., Ahmed B. Ibrahim, Khaled Issa, and Saleh A. Alshebeili, "MmW Rotman lens-based sensing: An investigation study," Sensors, Vol. 21, No. 4, 1163, 2021.
doi:10.3390/s21041163

43. Lian, Ji-Wei, Hao-Nan Wu, Chun Geng, Wonbin Hong, and Dazhi Ding, "Compact millimeter-wave orthogonal siw multibeam antenna based on shared-cavity rotman lens and shared-aperture array antenna," IEEE Transactions on Antennas and Propagation, Vol. 73, No. 8, 6169-6174, 2025.
doi:10.1109/tap.2025.3564737

44. Chou, Hsi-Tseng and Chen-Yi Chang, "Application of rotman lens beamformer for relatively flexible multibeam coverage from electrically large-phased arrays of antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3058-3066, 2019.
doi:10.1109/tap.2019.2896755

45. Haro-Báez, Raúl, Jose Moreno, and Diego S. Benítez, "On the design of a substrate integrated waveguide rotman lens for K-band applications," 2020 IEEE Latin-American Conference on Communications (LATINCOM), 1-6, Santo Domingo, Dominican, 2020.
doi:10.1109/LATINCOM50620.2020.9282350