Vol. 163
Latest Volume
All Volumes
PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-22
Beam Steering, Biodegradable MIMO DRA: A 3D-Printed Solution for Wideband and High-Isolation C-Band Applications
By
Progress In Electromagnetics Research C, Vol. 163, 239-251, 2026
Abstract
In this study, we describe a compact two-port MIMO dielectric resonator antenna (DRA) system made from biodegradable polylactic acid (PLA) using additive manufacturing techniques. Performance goals were achieved through a systematic performance study on the pin height, pin position, cavity width, and cavity length. The simulated results showed a wide range of bandwidth from 5.0 to 7.4 GHz with return loss (|S11|) lower than -10 dB corresponding to a fractional bandwidth of approximately 36.8%. Excellent port isolation is achieved with |S21| < -20 dB consistent across the entire band. The antenna provides more than 10 dBi gain with a high directivity making it useful for high-performance wireless applications. Furthermore, diversity MIMO performance confirms exceptional diversity performance with the Envelope correlation coefficient (ECC) remaining below 0.015 and ideal Diversity Gain (DG) of 10 dB. Another important feature is the electronic beam steering capability of this antenna, enabled by adjusting the phase difference between the two ports. With excitation phase shifts of 0°, 90°, 180°, and 270°, the antenna's main beam can be steered between broadside and unidirectional directions, providing flexible spatial coverage through dynamic phase control, rather than switching among fundamentally different radiation patterns. The employment of environmentally friendly PLA materials paired with 3D printing technology fosters sustainable practices for antenna development while simultaneously permitting inexpensive prototype creation and swift adaptability in the design changes. This MIMO DRA system can be extensively employed in C-band applications like the 5G communication systems, satellite downlink services, radar systems, and high-speed wireless data links where it is crucial to have wide bandwidth, high isolation, and compact size.
Citation
Bingi Naresh Kumar, Metuku Shyam Sunder, and Dasari Ramakrishna, "Beam Steering, Biodegradable MIMO DRA: A 3D-Printed Solution for Wideband and High-Isolation C-Band Applications," Progress In Electromagnetics Research C, Vol. 163, 239-251, 2026.
doi:10.2528/PIERC25090401
References

1. Ahmad, Hamza, Mohd Haizal Jamaluddin, Fauziahanim Che Seman, and Muhibur Rahman, "MIMO dielectric resonator antennas for 5G applications: A review," Electronics, Vol. 12, No. 16, 3469, 2023.
doi:10.3390/electronics12163469

2. Harkare, Ankita H., Ashwin G. Kothari, Ankit A. Bhurane, Mahesh P. Abegaonkar, and Pragati Patel, "A compact dielectric resonator antenna with wideband circular polarization characteristics for C and X‐band applications," Microwave and Optical Technology Letters, Vol. 66, No. 7, e34241, 2024.
doi:10.1002/mop.34241

3. Ahmad, Hamza, Mohd Haizal Jamaluddin, Fauziahanim Che Seman, Muhibur Rahman, Nida Nasir, and Ayesha Ayub, "Compact dual-band enhanced bandwidth 5G mm-wave MIMO dielectric resonator antenna utilizing metallic strips," AEU --- International Journal of Electronics and Communications, Vol. 187, 155510, 2024.
doi:10.1016/j.aeue.2024.155510

4. El Yousfi, Ahmed, Kerlos Atia Abdalmalak, Abdenasser Lamkaddem, Alejandro Murrillo Barrera, Bruno Biscontini, and Daniel Segovia-Vargas, "Miniaturized dual-polarized, high-gain, and wideband dielectric resonator antenna for low band massive MIMO applications," Progress In Electromagnetics Research, Vol. 179, 101-111, 2024.
doi:10.2528/pier24021303

5. Muttair, Karrar Shakir, Oras Ahmed Shareef, and Hazeem Baqir Taher, "Designs, developments, challenges, and fabrication materials for MIMO antennas with various 5G and 6G applications: A review," International Journal of Microwave and Wireless Technologies, Vol. 16, No. 9, 1510-1539, 2024.
doi:10.1017/s1759078724001004

6. Merlos-Garza, Erendira, Zia U. Khan, and Salam K. Khamas, "A compact MIMO rectangular dielectric resonator antenna for millimeter-wave communication," Electronics, Vol. 13, No. 16, 3280, 2024.
doi:10.3390/electronics13163280

7. Dhananjeyan, R., S. Ramesh, D. Rajesh Kumar, and Om Prakash Kumar, "Compact octagonal MIMO antenna system for broadband applications with enhanced isolation and wideband performance," Scientific Reports, Vol. 15, No. 1, 18921, 2025.
doi:10.1038/s41598-025-03494-7

8. Sharma, Preeti, Rakesh N. Tiwari, Prabhakar Singh, Pradeep Kumar, and Binod K. Kanaujia, "MIMO antennas: Design approaches, techniques and applications," Sensors, Vol. 22, No. 20, 7813, 2022.
doi:10.3390/s22207813

9. Votis, Constantinos, George Tatsis, and Panos Kostarakis, "Envelope correlation parameter measurements in a MIMO antenna array configuration," International Journal of Communications, Network and System Sciences, Vol. 3, No. 4, 350-354, 2010.
doi:10.4236/ijcns.2010.34044

10. El Hadri, D., A. Zugari, A. Zakriti, and M. El Ouahabi, "Dual-band MIMO antenna with four CPW elements using polarization diversity for 5G mobile communication networks and satellite," Advanced Electromagnetics, Vol. 12, No. 3, 43-53, 2023.
doi:10.7716/aem.v12i3.2077

11. Yurduseven, Okan, Shengrong Ye, Thomas Fromenteze, Benjamin J. Wiley, and David R. Smith, "3D conductive polymer printed metasurface antenna for Fresnel focusing," Designs, Vol. 3, No. 3, 46, 2019.
doi:10.3390/designs3030046

12. Aydın, Emine Avşar, Mustafa Berkan Biçer, Mehmet Erman Mert, Ceyla Özgür, and Başak Doğru Mert, "3D-printed antenna design using graphene filament and copper tape for high-tech air components," SAE International Journal of Aerospace, Vol. 16, No. 2, 131-140, 2023.
doi:10.4271/01-16-02-0008

13. Stopforth, Riaan, "Conductive polylactic acid filaments for 3D printed sensors: Experimental electrical and thermal characterization," Scientific African, Vol. 14, e01040, 2021.
doi:10.1016/j.sciaf.2021.e01040

14. Zhang, Jinhua, Shi Dong, Deema Mohammed Alsekait, Imran Khan, Pi-Chung Wang, and Ibrahim A. Hameed, "Design and performance optimization of a novel lens antenna for emerging beyond 5G wireless applications," Frontiers in Materials, Vol. 11, 1479398, 2024.
doi:10.3389/fmats.2024.1479398

15. Shang, Yuqiu, Qingsheng Zeng, Wanzhao Cui, Xinwei Wang, and Gengqi Zheng, "Design of pattern reconfigurable patch antenna array based on reflective phase-shifter," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 2803285, 2022.
doi:10.1155/2022/2803285

16. Zhou, Zijian, Jingze Ding, and Rui Zhang, "Polarforming design with phase shifter based polarization reconfigurable antennas," ArXiv Preprint ArXiv:2505.21990, 2025.
doi:10.48550/arXiv.2505.21990