Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-23
Electrostatic Shielding of a Rectangular Conducting Enclosure: Influence of Aperture Position on the Penetrated Field
By
Progress In Electromagnetics Research C, Vol. 162, 114-120, 2025
Abstract
This paper investigates, by means of finite-element simulations, how the position of an aperture affects the electrostatic shielding effectiveness of a rectangular metallic enclosure. First, we compute the electric-field distribution on the surface of a completely closed enclosure placed in an external electric field. The results show that, for every wall, the field is weakest at the center, and that the field on walls parallel to the external field is far lower than that on walls perpendicular to it. Next, we determine the electric field that leaks into the enclosure after an aperture is introduced. We find that the field strength decreases with the distance from the aperture, that the field near the aperture is proportional to the surface field at the aperture's location when the aperture is covered. Also, its magnitude can be predicted by the classical model of the small aperture coupling. Finally, we investigate the coexistence effect and formulate guidelines for choosing the aperture position to achieve optimum shielding performance.
Citation
Xiaolin Zhao, Hanyu Wu, and Chongqing Jiao, "Electrostatic Shielding of a Rectangular Conducting Enclosure: Influence of Aperture Position on the Penetrated Field," Progress In Electromagnetics Research C, Vol. 162, 114-120, 2025.
doi:10.2528/PIERC25090503
References

1. Celozzi, Salvatore, Rodolfo Araneo, Paolo Burghignoli, and Giampiero Lovat, Electromagnetic Shielding: Theory and Applications, John Wiley & Sons, 2022.

2. VijayKashimatt, M. G., Manjunath Vatnalmath, and Virupaxi Auradi, "A review on conductive polymer composites focusing on advancements in electrical conductivity, and electromagnetic shielding capabilities," Polymer Composites, Review Article, 2025.
doi:10.1002/pc.70059

3. Li, Zhongqi, Ziyue Gan, Liquan Ren, Bin Li, Pengsheng Kong, Hui Li, and Junjun Li, "Research on single-hole compensated passive magnetic shielding structure for electric vehicle wireless power transfer systems," Progress In Electromagnetics Research B, Vol. 107, 63-75, 2024.
doi:10.2528/pierb24050703

4. Singh, Deepika, Rana Pratap Yadav, and Hemdutt Joshi, "Multi-band 3D printed frequency selective surface for RF shielding applications," Progress In Electromagnetics Research Letters, Vol. 122, 59-65, 2024.
doi:10.2528/PIERL24062701

5. Meka, Naveena and Krishnan Shambavi, "Conformal angularly stable quadband frequency selective surface for EMI shielding," Progress In Electromagnetics Research Letters, Vol. 122, 29-35, 2024.
doi:10.2528/pierl24061601

6. Kalantari, Mona and Seyed Hossein Hesamedin Sadeghi, "An efficient surface integral equation-method of moments for analysis of electromagnetic shielding effectiveness of a perforated isotropic and lossy enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 67, No. 1, 99-107, 2025.
doi:10.1109/temc.2024.3486209

7. Jin, Hai, Hongliang Zhang, Yurun Ma, Kejian Chen, and Xinfeng Sun, "An analytical hybrid model for the shielding effectiveness evaluation of a dual-cavity structure with an aperture array," Progress In Electromagnetics Research Letters, Vol. 91, 109-116, 2020.
doi:10.2528/pierl20033101

8. Shen, Wei, Sen Wang, Wei Li, Hai Jin, and Hongliang Zhang, "An extended hybrid analytical model for shielding effectiveness prediction of multi-cavity structure with numerous apertures," Progress In Electromagnetics Research M, Vol. 96, 181-190, 2020.
doi:10.2528/pierm20081201

9. Bai, Jinjun, Xiaolong Li, Jianshu Zhou, and Ming Li, "Integrated prediction of condensation-corrosion-shielding effectiveness of metal box with gaps by simulations," Progress In Electromagnetics Research C, Vol. 144, 137-145, 2024.
doi:10.2528/pierc24050701

10. Boridy, Elie, "Penetration of electric fields into open conducting cavities," Journal of Applied Physics, Vol. 68, No. 9, 4385-4392, 1990.
doi:10.1063/1.346187

11. Casey, Kendall F., "Quasi-static electric-and magnetic-field penetration of a spherical shield through a circular aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 27, No. 1, 13-17, 1985.
doi:10.1109/temc.1985.304240

12. Liu, Y., B. Tang, and Y. Gao, "Electric field penetration and perturbation problems of a nonuniform cylindrical cavity with a slot," IEEE Transactions on Electromagnetic Compatibility, Vol. 37, No. 3, 458-462, 1995.
doi:10.1109/15.406537

13. Liu, Tianhao, Allard Schnabel, Liyi Li, Zhiyin Sun, and Jens Voigt, "Impact of circular apertures on static shielding performances of spherical magnetic shields," IEEE Magnetics Letters, Vol. 11, 1-5, 2020.
doi:10.1109/lmag.2020.3042135

14. Hao, Si-Yuan, Xiao-Ping Lou, Jing Zhu, Guang-Wei Chen, and Hui-Yu Li, "Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes," Chinese Physics B, Vol. 30, No. 6, 060702, 2021.
doi:10.1088/1674-1056/abeeee

15. Yin, Ming-Chu and Ping-An Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
doi:10.1109/temc.2016.2517163

16. Comsol Software, https://comsol.asia/comsol-multiphysics.

17. Jackson, John David, Classical Electrodynamics, 3rd Ed., Chap. 3, 129-135, John Wiley & Sons, 1998.
doi:10.1063/1.3057859

18. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 7-8, 163, 1944.
doi:10.1103/physrev.66.163

19. Du, Zhanpeng, Zhiye Jiang, Zuoxing Deng, Jiancheng Huang, and Chongqing Jiao, "A closed-form expression of electric polarizability for elliptical apertures excited by nonuniform electric field," Physica Scripta, Vol. 98, No. 11, 115532, 2023.
doi:10.1088/1402-4896/acfc01

20. Du, Zhanpeng, Jiahua Mei, Tianxi Li, Fan Yu, Haidong Liu, He Huang, Tilu Zhang, and Chongqing Jiao, "Closed-form expressions for magnetic polarizabilities of circular apertures excited by nonuniform magnetic fields," Physica Scripta, Vol. 99, No. 12, 125545, 2024.
doi:10.1088/1402-4896/ad9069

21. Lu, Jingye, Yikang Shi, and Chongqing Jiao, "The closed-form expression for the dipole moment of an elliptical aperture excited by nonuniform magnetic fields," Physica Scripta, Vol. 100, No. 8, 085502, 2025.
doi:10.1088/1402-4896/adf01c

22. Paul, Clayton R., Robert C. Scully, and Mark A. Steffka, Introduction to Electromagnetic Compatibility, 2nd Ed., 749, John Wiley & Sons, 2006.
doi:10.1002/0471758159