1. Celozzi, Salvatore, Rodolfo Araneo, Paolo Burghignoli, and Giampiero Lovat, Electromagnetic Shielding: Theory and Applications, John Wiley & Sons, 2022.
2. VijayKashimatt, M. G., Manjunath Vatnalmath, and Virupaxi Auradi, "A review on conductive polymer composites focusing on advancements in electrical conductivity, and electromagnetic shielding capabilities," Polymer Composites, Review Article, 2025.
doi:10.1002/pc.70059 Google Scholar
3. Li, Zhongqi, Ziyue Gan, Liquan Ren, Bin Li, Pengsheng Kong, Hui Li, and Junjun Li, "Research on single-hole compensated passive magnetic shielding structure for electric vehicle wireless power transfer systems," Progress In Electromagnetics Research B, Vol. 107, 63-75, 2024.
doi:10.2528/pierb24050703 Google Scholar
4. Singh, Deepika, Rana Pratap Yadav, and Hemdutt Joshi, "Multi-band 3D printed frequency selective surface for RF shielding applications," Progress In Electromagnetics Research Letters, Vol. 122, 59-65, 2024.
doi:10.2528/PIERL24062701 Google Scholar
5. Meka, Naveena and Krishnan Shambavi, "Conformal angularly stable quadband frequency selective surface for EMI shielding," Progress In Electromagnetics Research Letters, Vol. 122, 29-35, 2024.
doi:10.2528/pierl24061601 Google Scholar
6. Kalantari, Mona and Seyed Hossein Hesamedin Sadeghi, "An efficient surface integral equation-method of moments for analysis of electromagnetic shielding effectiveness of a perforated isotropic and lossy enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 67, No. 1, 99-107, 2025.
doi:10.1109/temc.2024.3486209 Google Scholar
7. Jin, Hai, Hongliang Zhang, Yurun Ma, Kejian Chen, and Xinfeng Sun, "An analytical hybrid model for the shielding effectiveness evaluation of a dual-cavity structure with an aperture array," Progress In Electromagnetics Research Letters, Vol. 91, 109-116, 2020.
doi:10.2528/pierl20033101 Google Scholar
8. Shen, Wei, Sen Wang, Wei Li, Hai Jin, and Hongliang Zhang, "An extended hybrid analytical model for shielding effectiveness prediction of multi-cavity structure with numerous apertures," Progress In Electromagnetics Research M, Vol. 96, 181-190, 2020.
doi:10.2528/pierm20081201 Google Scholar
9. Bai, Jinjun, Xiaolong Li, Jianshu Zhou, and Ming Li, "Integrated prediction of condensation-corrosion-shielding effectiveness of metal box with gaps by simulations," Progress In Electromagnetics Research C, Vol. 144, 137-145, 2024.
doi:10.2528/pierc24050701 Google Scholar
10. Boridy, Elie, "Penetration of electric fields into open conducting cavities," Journal of Applied Physics, Vol. 68, No. 9, 4385-4392, 1990.
doi:10.1063/1.346187 Google Scholar
11. Casey, Kendall F., "Quasi-static electric-and magnetic-field penetration of a spherical shield through a circular aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 27, No. 1, 13-17, 1985.
doi:10.1109/temc.1985.304240 Google Scholar
12. Liu, Y., B. Tang, and Y. Gao, "Electric field penetration and perturbation problems of a nonuniform cylindrical cavity with a slot," IEEE Transactions on Electromagnetic Compatibility, Vol. 37, No. 3, 458-462, 1995.
doi:10.1109/15.406537 Google Scholar
13. Liu, Tianhao, Allard Schnabel, Liyi Li, Zhiyin Sun, and Jens Voigt, "Impact of circular apertures on static shielding performances of spherical magnetic shields," IEEE Magnetics Letters, Vol. 11, 1-5, 2020.
doi:10.1109/lmag.2020.3042135 Google Scholar
14. Hao, Si-Yuan, Xiao-Ping Lou, Jing Zhu, Guang-Wei Chen, and Hui-Yu Li, "Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes," Chinese Physics B, Vol. 30, No. 6, 060702, 2021.
doi:10.1088/1674-1056/abeeee Google Scholar
15. Yin, Ming-Chu and Ping-An Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
doi:10.1109/temc.2016.2517163 Google Scholar
16. Comsol Software, https://comsol.asia/comsol-multiphysics.
17. Jackson, John David, Classical Electrodynamics, 3rd Ed., Chap. 3, 129-135, John Wiley & Sons, 1998.
doi:10.1063/1.3057859
18. Bethe, H. A., "Theory of diffraction by small holes," Physical Review, Vol. 66, No. 7-8, 163, 1944.
doi:10.1103/physrev.66.163 Google Scholar
19. Du, Zhanpeng, Zhiye Jiang, Zuoxing Deng, Jiancheng Huang, and Chongqing Jiao, "A closed-form expression of electric polarizability for elliptical apertures excited by nonuniform electric field," Physica Scripta, Vol. 98, No. 11, 115532, 2023.
doi:10.1088/1402-4896/acfc01 Google Scholar
20. Du, Zhanpeng, Jiahua Mei, Tianxi Li, Fan Yu, Haidong Liu, He Huang, Tilu Zhang, and Chongqing Jiao, "Closed-form expressions for magnetic polarizabilities of circular apertures excited by nonuniform magnetic fields," Physica Scripta, Vol. 99, No. 12, 125545, 2024.
doi:10.1088/1402-4896/ad9069 Google Scholar
21. Lu, Jingye, Yikang Shi, and Chongqing Jiao, "The closed-form expression for the dipole moment of an elliptical aperture excited by nonuniform magnetic fields," Physica Scripta, Vol. 100, No. 8, 085502, 2025.
doi:10.1088/1402-4896/adf01c Google Scholar
22. Paul, Clayton R., Robert C. Scully, and Mark A. Steffka, Introduction to Electromagnetic Compatibility, 2nd Ed., 749, John Wiley & Sons, 2006.
doi:10.1002/0471758159