Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-18
Study on the Spatiotemporal Characteristics of Gics in Shandong Peninsula, China Under the Geomagnetic Storm of February 27, 2023
By
Progress In Electromagnetics Research C, Vol. 162, 19-25, 2025
Abstract
For assessing Geomagnetically Induced Currents (GICs) risks in mid-latitude coastal power grids, this study developed a three-dimensional Earth conductivity model that incorporates coastal effects. The model was constructed using geological cross-sectional data from the China Earthquake Administration and measured terrestrial conductivity data. Focusing on the strong geomagnetic storm of February 27, 2023, the spatiotemporal characteristics of GICs in Shandong Peninsula across 34 substations and 46 transmission lines were accurately computed. The GICs peak of the substation appears at Muping , and the GICs peak of the transmission line appears at Zouxian-Luzhou Line. Notably, two coastal substations exceeded the safety limit for GICs. Areas of highest risk are concentrated in the southeastern coastal region of Shandong, underscoring the significant impact of coastal effects and changes in Geological Structure. This method and its findings provide a global reference for predicting and issuing early warnings regarding GICs in long-distance mid-latitude coastal power grids.
Citation
Xiaofeng Zhou, Xinwei Zhang, Xiaolong Li, Jia Cao, Tao Li, and Yanling Wang, "Study on the Spatiotemporal Characteristics of Gics in Shandong Peninsula, China Under the Geomagnetic Storm of February 27, 2023," Progress In Electromagnetics Research C, Vol. 162, 19-25, 2025.
doi:10.2528/PIERC25090901
References

1. Apatenkov, S. V., V. A. Pilipenko, E. I. Gordeev, A. Viljanen, L. Juusola, V. B. Belakhovsky, Y. A. Sakharov, and V. N. Selivanov, "Auroral omega bands are a significant cause of large geomagnetically induced currents," Geophysical Research Letters, Vol. 47, No. 6, e2019GL086677, 2020.
doi:10.1029/2019gl086677

2. Liu, Chunming, Yared S. Ganebo, and Donghui Wang, "Optimal configuration method of capacitor isolation device against DC bias on improved niche GA algorithm," The Journal of Engineering, Vol. 2019, No. 16, 1571-1574, 2019.
doi:10.1049/joe.2018.8883

3. Wang, Han, Zan-Yang Xing, Nanan Balan, Yan-Ling Wang, Qing-He Zhang, and Li-Kai Liang, "Simulation and analysis of geomagnetically induced current levels in Shandong power grid," Space Weather, Vol. 19, No. 4, e2020SW002615, 2021.
doi:10.1029/2020sw002615

4. Xu, Wen-Hao, Zan-Yang Xing, Nanan Balan, Li-Kai Liang, Yan-Ling Wang, Qing-He Zhang, Zi-Dan Sun, and Wen-Bin Li, "Spectral analysis of geomagnetically induced current and local magnetic field during the 17 March 2013 geomagnetic storm," Advances in Space Research, Vol. 69, No. 9, 3417-3425, 2022.
doi:10.1016/j.asr.2022.02.025

5. Liu, C. M., X. Wang, L. G. Liu, B. Dong, and Z. Z. Wang, "Calculation method of geomagnetically induced currents in the power grid considering the influence of the coast effect," Proceedings of the CSEE, Vol. 36, No. 22, 6059-6066, 2016.
doi:10.13334/j.0258-8013.pcsee.160968

6. Honkonen, I., A. Kuvshinov, L. Rastätter, and A. Pulkkinen, "Predicting global ground geoelectric field with coupled geospace and three-dimensional geomagnetic induction models," Space Weather, Vol. 16, No. 8, 1028-1041, 2018.
doi:10.1029/2018sw001859

7. Pulkkinen, A., M. Hesse, M. Kuznetsova, and L. Rastätter, "First-principles modeling of geomagnetically induced electromagnetic fields and currents from upstream solar wind to the surface of the Earth," Annales Geophysicae, Vol. 25, No. 4, 881-893, 2007.
doi:10.5194/angeo-25-881-2007

8. Liu, L. G., P. H. Yang, S. X. Guo, C. M. Liu, and C. L. Ma, "Impact of geoelectric field direction and AC system structure on geomagnetically induced currents in ±800 kV Mengxi convertor station," Power System Technology, Vol. 40, No. 5, 1295-1300, 2016.
doi:10.13335/j.1000-3673.pst.2016.05.001

9. Liu, C. M., C. X. Lin, X. N. Wang, X. Li, and W. Li, "Influence of coast effect on geomagnetically induced currents in power grid," Power System Technology, Vol. 41, No. 8, 2716–2722, 2017.
doi:10.13335/j.1000-3673.pst.2016.3041

10. Nakamura, S., Y. Ebihara, S. Fujita, T. Goto, N. Yamada, S. Watari, and Y. Omura, "Time domain simulation of geomagnetically induced current (GIC) flowing in 500‐kV power grid in Japan including a three‐dimensional ground inhomogeneity," Space Weather, Vol. 16, No. 12, 1946-1959, 2018.
doi:10.1029/2018sw002004

11. Zhang, Xin, Angelo De Santis, Loredana Perrone, and Xiaoping Wu, "A similar coast effect of geoelectric field directions in a three-block boundary zone during geomagnetic storm pulses," Geophysical Journal International, Vol. 241, No. 3, 1936-1946, 2025.
doi:10.1093/gji/ggae424

12. Marshalko, Elena, Mikhail Kruglyakov, Alexey Kuvshinov, and Ari Viljanen, "Three-dimensional modeling of the ground electric field in fennoscandia during the halloween geomagnetic storm," Space Weather, Vol. 21, No. 9, e2022SW003370, 2023.
doi:10.1029/2022sw003370

13. Wang, Xuan and Shuming Zhang, "The geoelectric field coast effect: Results from two dimensional finite element method and analytic solutions," Alexandria Engineering Journal, Vol. 77, 525-536, 2023.
doi:10.1016/j.aej.2023.06.089

14. Hübert, J., E. Eaton, C. D. Beggan, A. M. Montiel-Álvarez, D. Kiyan, and C. Hogg, "Developing a new ground electric field model for geomagnetically induced currents in britain based on long-period magnetotelluric data," Space Weather, Vol. 23, No. 8, e2025SW004427, 2025.
doi:10.1029/2025sw004427

15. Alves Ribeiro, Joana, Fernando J. G. Pinheiro, Rute Rodrigues Santos, and Maria Alexandra Pais, "Effect of spatial resolution of conductivity models for Geomagnetically Induced Currents estimation: case study in a geological complex region," Geophysical Journal International, Vol. 242, No. 3, ggaf277, 2025.
doi:10.1093/gji/ggaf277

16. Juusola, Liisa, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen, "Estimation of the 3-D geoelectric field at the Earth's surface using spherical elementary current systems," Annales Geophysicae, Vol. 43, No. 1, 271-301, 2025.
doi:10.5194/angeo-43-271-2025

17. Wang, Chi, Jiyao Xu, Libo Liu, Xianghui Xue, Qinghe Zhang, Yongqiang Hao, Gang Chen, Hui Li, Guozhu Li, Bingxian Luo, Yajun Zhu, and Jiangyan Wang, "Contribution of the Chinese Meridian Project to space environment research: Highlights and perspectives," Science China Earth Sciences, Vol. 66, No. 7, 1423-1438, 2023.
doi:10.1007/s11430-022-1043-3

18. Ma, Xingyuan, Changyuan Liu, and Guodong Liu, "The geoscience transect from Xiangshui, Jiangsu Province to Mandal, Inner Mongolia," Acta Geologica Sinica English Edition, Vol. 5, No. 1, 1-21, 1992.
doi:10.1111/j.1755-6724.1992.mp5001001.x

19. Dimmock, Andrew P., L. Rosenqvist, D. T. Welling, A. Viljanen, I. Honkonen, R. J. Boynton, and Emiliya Yordanova, "On the regional variability of db/dt and its significance to GIC," Space Weather: The International Journal of Research and Application, Vol. 18, No. 8, e2020SW002497, 2020.
doi:10.1029/2020SW002497

20. Grayver, Alexander V., "Global 3‐D electrical conductivity model of the world ocean and marine sediments," Geochemistry, Geophysics, Geosystems, Vol. 22, No. 9, e2021GC009950, 2021.
doi:10.1029/2021gc009950

21. Chave, Alan D. and Alan G. Jones, The Magnetotelluric Method: Theory and Practice, Cambridge University Press, 2012.

22. Dong, Bo, Ze-Zhong Wang, Lian-Guang Liu, Li-Ping Liu, and Chun-Ming Liu, "Proximity effect on the induced geoelectric field at the lateral interface of different conductivity structures during geomagnetic storms," Chinese Journal of Geophysics, Vol. 58, No. 1, 32-40, 2015.
doi:10.1002/cjg2.20153

23. Wang, Xuan, Chunming Liu, and Zhouming Kang, "Effect of the Earth's lateral conductivity variations on geomagnetically induced currents in power grids," International Journal of Electrical Power & Energy Systems, Vol. 132, 107148, 2021.
doi:10.1016/j.ijepes.2021.107148

24. Boteler, David, "Methodology for simulation of geomagnetically induced currents in power systems," Journal of Space Weather and Space Climate, Vol. 4, A21, 2014.
doi:10.1051/swsc/2014018