Vol. 136
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-12-19
Machine Learning-Based RCS Prediction for Metasurface-Integrated Cavity Structures
By
Progress In Electromagnetics Research M, Vol. 136, 68-76, 2025
Abstract
Conventional full-wave methods face prohibitive computational costs for far-field scattering optimization of metasurface-integrated cavity structures. To address this limitation, a lightweight residual neural network is introduced within a two-stage scattering prediction framework. This framework effectively mitigates model degradation. The first stage employs shallow convolutional networks to extract local phase-coupling features. The second stage integrates residual layers with fully connected layers to refine cross-scale scattering responses. A compact CNN-ResNet surrogate model is developed for rapid cavity scattering prediction. With only 2.5×104 parameters and training on 500 full-wave samples spanning 6.0-16.0 GHz, the model achieves high computational efficiency. The proposed approach directly maps binary phase-coded matrices to far-field electromagnetic characteristics. Extensive validation on a cavity structure across 6.0-16.0 GHz demonstrates excellent accuracy. The per-sample runtime is reduced from hours to milliseconds while maintaining prediction errors below 3 dB. These results confirm the effectiveness of the approach in enabling fast and accurate electromagnetic scattering prediction for complex cavity environments. The approach provides a practical solution for metasurface-integrated cavity optimization.
Citation
Xi Liu, Peng Nian, Yu Zhang, Yi Ren, Yi-Xin Guo, Yang-Chun Gao, and Bing Chen, "Machine Learning-Based RCS Prediction for Metasurface-Integrated Cavity Structures," Progress In Electromagnetics Research M, Vol. 136, 68-76, 2025.
doi:10.2528/PIERM25091105
References

1. Obelleiro-Basteiro, F., J. Luis Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 4, 356-361, Apr. 1995.
doi:10.1109/8.376032

2. Bourlier, Christophe, Hongyang He, Janic Chauveau, Régis Hémon, and Philippe Pouliguen, "RCS of large bent waveguide ducts from a modal analysis combined with the Kirchhoff approximation," Progress In Electromagnetics Research, Vol. 88, 1-38, 2008.
doi:10.2528/pier08101708

3. Lee, Choon and Shung-Wu Lee, "RCS of a coated circular waveguide terminated by a perfect conductor," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 4, 391-398, Apr. 1987.
doi:10.1109/tap.1987.1144114

4. Yang, Yunyun, Haoxuan Xin, Yixin Liu, Haoliang Cheng, Yongxing Jin, Chenxia Li, Jianxun Lu, Bo Fang, Zhi Hong, and Xufeng Jing, "Intelligent metasurfaces: Integration of artificial intelligence technology and metasurfaces," Chinese Journal of Physics, Vol. 89, 991-1008, 2024.
doi:10.1016/j.cjph.2024.03.043

5. Zhao, Tianqi, Bo Fang, Peng Chen, Youhuang Ke, Zhe Kong, Changyu Shen, Chenxia Li, and Xufeng Jing, "High efficiency flexible control of wave beams based on addition and subtraction operations on all dielectric reflection metasurfaces," IEEE Sensors Journal, Vol. 22, No. 5, 4057-4068, Mar. 2022.
doi:10.1109/jsen.2022.3143863

6. Ma, Qian, Qiang Xiao, Qiao Ru Hong, Xinxin Gao, Vincenzo Galdi, and Tie Jun Cui, "Digital coding metasurfaces: From theory to applications," IEEE Antennas and Propagation Magazine, Vol. 64, No. 4, 96-109, Aug. 2022.
doi:10.1109/map.2022.3169397

7. Xu, Peng, Wei Xiang Jiang, Xiao Cai, Shi Hao Bai, and Tie Jun Cui, "An integrated coding-metasurface-based array antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 891-899, Feb. 2020.
doi:10.1109/tap.2019.2944529

8. Chai, Yue, Hui Deng, and Qingxu Xiong, "A dynamically phase tunable metasurface for a broad bandwidth ultra-low radar cross section," IEEE Access, Vol. 8, 53006-53017, 2020.
doi:10.1109/access.2020.2981163

9. Malkiel, Itzik, Michael Mrejen, Achiya Nagler, Uri Arieli, Lior Wolf, and Haim Suchowski, "Plasmonic nanostructure design and characterization via deep learning," Light: Science & Applications, Vol. 7, No. 1, 60, 2018.
doi:10.1038/s41377-018-0060-7

10. Paquay, Maurice, Juan-Carlos Iriarte, IÑigo Ederra, Ramon Gonzalo, and Peter de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/tap.2007.910306

11. Ameri, Edris, Seyed Hassan Esmaeli, and Seyed Hassan Sedighy, "Ultra wideband radar cross section reduction by using polarization conversion metasurfaces," Scientific Reports, Vol. 9, No. 1, 478, Jan. 2019.
doi:10.1038/s41598-018-36542-6

12. Pan, Yibo, Feng Lan, Yaxin Zhang, Hongxin Zeng, Luyang Wang, Tianyang Song, Guiju He, and Ziqiang Yang, "Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space," Photonics Research, Vol. 10, No. 2, 416-425, 2022.
doi:10.1364/prj.444773

13. Amboli, Jayeeta, Bruno Gallas, Guillaume Demésy, and Nicolas Bonod, "Design and analysis of chiral and achiral metasurfaces with the finite element method," Optics Express, Vol. 31, No. 26, 43147-43162, 2023.
doi:10.1364/oe.500540

14. Jia, Xiao, Fan Yang, Yinghong Wen, Maokun Li, and Shenheng Xu, "Characteristic model and efficient FDTD-SPM algorithm for fishnet metasurfaces analysis," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 8729-8738, Oct. 2022.
doi:10.1109/tap.2022.3177480

15. Teng, Yan, Chun Li, Shaochen Li, Yuhua Xiao, and Ling Jiang, "Efficient design method for terahertz broadband metasurface patterns via deep learning," Optics & Laser Technology, Vol. 160, 109058, 2023.
doi:10.1016/j.optlastec.2022.109058

16. Fu, Jiahui, Zhihu Yang, Meng Liu, Huiyun Zhang, and Yuping Zhang, "Highly-efficient design method for coding metasurfaces based on deep learning," Optics Communications, Vol. 529, 129043, 2023.
doi:10.1016/j.optcom.2022.129043

17. Donda, Krupali, Yifan Zhu, Aurélien Merkel, Shi-Wang Fan, Liyun Cao, Sheng Wan, and Badreddine Assouar, "Ultrathin acoustic absorbing metasurface based on deep learning approach," Smart Materials and Structures, Vol. 30, No. 8, 085003, 2021.
doi:10.1088/1361-665x/ac0675

18. He, Qingting, Haiyan Chen, Qian Liu, Xin Yao, Fengxia Li, Difei Liang, Jianliang Xie, and Longjiang Deng, "Ultra-wideband and wide-angle RCS reduction of a concave structure based on a chessboard polarization conversion metasurfaces," Journal of Physics D: Applied Physics, Vol. 57, No. 3, 035104, 2023.
doi:10.1088/1361-6463/ad005e

19. He, Qingting, Haiyan Chen, Qian Liu, Xin Yao, Fengxia Li, Difei Liang, Jianliang Xie, and Longjiang Deng, "Design of broadband and ultra-wide-angle low-RCS open-ended cavity based on phase cancellation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 2023, No. 1, 9958074, 2023.
doi:10.1155/2023/9958074

20. Zunair, Hasib and A. Ben Hamza, "Sharp U-Net: Depthwise convolutional network for biomedical image segmentation," Computers in Biology and Medicine, Vol. 136, 104699, 2021.
doi:10.1016/j.compbiomed.2021.104699

21. Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo, "Swin transformer: Hierarchical vision transformer using shifted windows," 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9992-10002, Montreal, QC, Canada, 2021.
doi:10.1109/ICCV48922.2021.00986

22. Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger, "Densely connected convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 4700-4708, 2017.