Vol. 162
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-26
Multi-Scale Visibility Fusion Network for Super-Resolution Near-Field Imaging in Synthetic Aperture Interferometric Radiometer
By
Progress In Electromagnetics Research C, Vol. 162, 140-147, 2025
Abstract
The Synthetic Aperture Interferometric Radiometer (SAIR) has demonstrated significant potential in Earth remote sensing and radio astronomy. However, most existing imaging methods rely on single-scale visibility function, while SAIR systems typically employ sparse arrays with insufficient sampling, which results in unsatisfactory imaging quality. In this paper, we propose a novel deep learning-based imaging method that addresses this limitation by leveraging multi-scale visibility function. The multi-scale visibility fusion network (MS-VFNet) introduces cross-attention mechanisms in the visibility domain for feature fusion across different scales, fully exploiting the implicit structural information, and subsequently reconstructs the brightness temperature images through a dedicated reconstruction module. The simulation results demonstrate that the proposed MS-VFNet achieves superior reconstruction accuracy and image quality compared to state-of-the-art methods, further validating the feasibility of multi-scale fusion in SAIR super-resolution imaging.
Citation
Fuxin Cai, Jianfei Chen, Ziang Zheng, and Leilei Liu, "Multi-Scale Visibility Fusion Network for Super-Resolution Near-Field Imaging in Synthetic Aperture Interferometric Radiometer," Progress In Electromagnetics Research C, Vol. 162, 140-147, 2025.
doi:10.2528/PIERC25091201
References

1. Kerr, Y. H., A. Al-Yaari, N. Rodriguez-Fernandez, M. Parrens, B. Molero, D. Leroux, S. Bircher, A. Mahmoodi, A. Mialon, P. Richaume, S. Delwart, A. Al Bitar, T. Pellarin, R. Bindlish, T. J. Jackson, C. Rüdiger, P. Waldteufel, S. Mecklenburg, and J.-P. Wigneron, "Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation," Remote Sensing of Environment, Vol. 180, 40-63, 2016.
doi:10.1016/j.rse.2016.02.042

2. Liu, Yongqing, Di Zhu, Peng Liu, Risheng Yun, Te Wang, and Xiangkun Zang, "The HY-4A scatterometer: A novel active system for measuring surface roughness for accurate sea-surface brightness temperature correction," IEEE Transactions on Geoscience and Remote Sensing, Vol. 63, 1-16, 2025.
doi:10.1109/tgrs.2025.3529490

3. Chen, Jianfei, Jian Guo, Sheng Zhang, and Xiaowei Zhu, "Blind restoration method for near-field millimeter-wave SAIR," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2, Nagoya, Japan, 2018.
doi:10.1109/irmmw-thz.2018.8510338

4. Du, Siyuan, Feng Zhao, Jiakai He, Xiong Chen, and Lifei Jiang, "A high-resolution image reconstruction technology based on G-matrix and fourier transform," 2022 3rd China International SAR Symposium (CISS), 1-7, Shanghai, China, 2022.
doi:10.1109/ciss57580.2022.9971364

5. Zhang, Yilong, Yuan Ren, Wei Miao, Zhenhui Lin, Hao Gao, and Shengcai Shi, "Microwave SAIR imaging approach based on deep convolutional neural network," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 12, 10376-10389, 2019.
doi:10.1109/tgrs.2019.2934154

6. Xiao, Chengwang, Haofeng Dou, Hao Li, Rong Jin, Ren Zhai, Wenjing Wang, Rongchuan Lv, and Yinan Li, "Image reconstruction of synthetic aperture radiometer by transformer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 61, 1-15, 2023.
doi:10.1109/tgrs.2023.3249899

7. Faucheron, Richard, Eric Anterrieu, Louise Yu, Ali Khazaal, and Nemesio J. Rodríguez-Fernández, "Deep-learning-based approach in imaging radiometry by aperture synthesis: An alias-free method," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 17, 6693-6711, 2024.
doi:10.1109/jstars.2024.3373875

8. Guo, Zhimin, Jianfei Chen, and Sheng Zhang, "Fully connected imaging network for near-field synthetic aperture interferometric radiometer," IEICE Transactions on Information, Vol. E105-D, No. 5, 1120-1124, 2022.
doi:10.1587/transinf.2021edl8105

9. Chen, Jianfei, Juncheng Zhou, and Ruyue Peng, "Distance adaptive imaging algorithm for synthetic aperture interferometric radiometer in near-field," IEEE Geoscience and Remote Sensing Letters, Vol. 20, 1-5, 2023.
doi:10.1109/lgrs.2023.3327763

10. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin, "Attention is all you need," arXiv:1706.03762v7, 2017.

11. Yao, Xianxun, Cheng Zheng, Jin Zhang, Baohua Yang, Anyong Hu, and Jungang Miao, "Near field image reconstruction algorithm for passive millimeter-wave imager BHU-2D-U," Progress In Electromagnetics Research C, Vol. 45, 57-72, 2013.
doi:10.2528/pierc13092201

12. Chen, Jianfei, Xiaowei Zhu, Sheng Zhang, and Xiaohong Chen, "General G-matrix imaging method for near-field millimeter-wave SAIR with any arrays," 2018 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Chengdu, China, 2018.
doi:10.1109/ieee-iws.2018.8400862

13. Li, Shiyong, Moeness Amin, Guoqiang Zhao, and Houjun Sun, "Radar imaging by sparse optimization incorporating MRF clustering prior," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 7, 1139-1143, 2020.
doi:10.1109/lgrs.2019.2943937

14. Zhang, Xiangyu, Xinyu Zhou, Mengxiao Lin, and Jian Sun, "ShuffleNet: An extremely efficient convolutional neural network for mobile devices," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6848-6856, Salt Lake City, UT, USA, 2018.
doi:10.1109/cvpr.2018.00716

15. Jian, Lihua, Songlei Xiong, Han Yan, Xiaoguang Niu, Shaowu Wu, and Di Zhang, "Rethinking cross-attention for infrared and visible image fusion," arXiv:2401.11675v1, 2024.

16. Xie, Saining, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He, "Aggregated residual transformations for deep neural networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1492-1500, Honolulu, HI, USA, Jul. 2017.

17. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox, "U-net: Convolutional networks for biomedical image segmentation," Medical Image Computing and Computer-Assisted Intervention --- MICCAI 2015, 234-241, Springer, Cham, 2015.
doi:10.1007/978-3-319-24574-4_28